Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4623, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532691

ABSTRACT

Craniofacial disorders arise in early pregnancy and are one of the most common congenital defects. To fully understand how craniofacial disorders arise, it is essential to characterize gene expression during the patterning of the craniofacial region. To address this, we performed bulk and single-cell RNA-seq on human craniofacial tissue from 4-8 weeks post conception. Comparisons to dozens of other human tissues revealed 239 genes most strongly expressed during craniofacial development. Craniofacial-biased developmental enhancers were enriched +/- 400 kb surrounding these craniofacial-biased genes. Gene co-expression analysis revealed that regulatory hubs are enriched for known disease causing genes and are resistant to mutation in the normal healthy population. Combining transcriptomic and epigenomic data we identified 539 genes likely to contribute to craniofacial disorders. While most have not been previously implicated in craniofacial disorders, we demonstrate this set of genes has increased levels of de novo mutations in orofacial clefting patients warranting further study.


Subject(s)
Bone and Bones , Transcriptome , Pregnancy , Female , Humans , Transcriptome/genetics , Mutation
2.
Am J Med Genet A ; 182(12): 2919-2925, 2020 12.
Article in English | MEDLINE | ID: mdl-32954677

ABSTRACT

Congenital diaphragmatic hernias (CDH) confer substantial morbidity and mortality. Genetic defects, including chromosomal anomalies, copy number variants, and sequence variants are identified in ~30% of patients with CDH. A genetic etiology is not yet found in 70% of patients, however there is a growing number of genetic syndromes and single gene disorders associated with CDH. While there have been two reported individuals with X-linked Opitz G/BBB syndrome with MID1 mutations who have CDH as an associated feature, CDH appears to be a much more prominent feature of a SPECC1L-related autosomal dominant Opitz G/BBB syndrome. Features unique to autosomal dominant Opitz G/BBB syndrome include branchial fistulae, omphalocele, and a bicornuate uterus. Here we present one new individual and five previously reported individuals with CDH found to have SPECC1L mutations. These cases provide strong evidence that SPECC1L is a bona fide CDH gene. We conclude that a SPECC1L-related Opitz G/BBB syndrome should be considered in any patient with CDH who has additional features of hypertelorism, a prominent forehead, a broad nasal bridge, anteverted nares, cleft lip/palate, branchial fistulae, omphalocele, and/or bicornuate uterus.


Subject(s)
Abnormalities, Multiple/pathology , Hernias, Diaphragmatic, Congenital/pathology , Mutation, Missense , Phosphoproteins/genetics , Abnormalities, Multiple/genetics , Child, Preschool , Female , Gestational Age , Hernias, Diaphragmatic, Congenital/etiology , Humans , Infant , Infant, Newborn , Male , Syndrome
3.
J Am Soc Echocardiogr ; 27(9): 940-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25042411

ABSTRACT

Cardiovascular physiologic remodeling associated with athleticism may mimic many of the features of genetic and acquired heart disease. The most pervasive dilemma is distinguishing between normal and abnormal physiologic remodeling in an athlete's heart. Imaging examinations, such as magnetic resonance imaging and computed tomography, which focus predominantly on anatomy, and electrocardiography, which monitors electrical components, do not simultaneously evaluate cardiac anatomy and physiology. Despite nonlinear anatomic and electrical remodeling, the athlete's heart retains normal or supernormal myocyte function, whereas a diseased heart has various degrees of pathophysiology. Echocardiography is the only cost-effective, validated imaging modality that is widely available and capable of simultaneously quantifying variable anatomic and physiologic features. Doppler echocardiography substantially redefines the understanding of normal remodeling from preemergent and overt disease.


Subject(s)
Cardiomegaly, Exercise-Induced , Death, Sudden/prevention & control , Echocardiography/methods , Heart Diseases/diagnostic imaging , Heart Diseases/physiopathology , Sports , Female , Humans , Male
4.
J Mol Biol ; 392(5): 1315-25, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19647747

ABSTRACT

The observation that denatured proteins yield scaling exponents, nu, consistent with random-coil behavior and yet can also have pockets of residual or nonrandom structure has been termed the "reconciliation problem". To provide greater insight into the denatured state of a foldable sequence, we have measured histidine-heme loop formation equilibria in the denatured state of a class II c-type cytochrome, cytochrome c' from Rhodopseudomonas palustris. We have prepared a series of variants that provide His-heme loop stabilities, pK(loop)(His), for loop sizes ranging from 10 to 111 residues at intervals of 7 to 11 residues along the sequence of the protein. We observe a scaling exponent for loop formation, nu(3), of 2.5+/-0.3. Theoretical values for nu(3) range from 1.8 to 2.4; thus, the observed nu(3) is consistent with random-coil behavior. However, in contrast to data for loop formation as a function of loop size obtained with peptides of homogeneous sequence, we observe considerable scatter about the linear dependence of loop stability on loop size. Thus, foldable sequences behave very differently from homogeneous peptide sequences. The observed scatter suggests that there is considerable variation in the conformational properties along the backbone of a foldable sequence, consistent with alternating compact and extended regions. With regard to the reconciliation problem, it is evident that a scaling exponent consistent with a random coil is necessary but not sufficient to demonstrate random-coil behavior.


Subject(s)
Cytochromes c'/chemistry , Rhodopseudomonas/enzymology , Kinetics , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Folding , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...