Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536042

ABSTRACT

BACKGROUND AND AIMS: It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS: Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION: These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.

2.
HGG Adv ; 4(4): 100232, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37663545

ABSTRACT

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) characterized by hypoplasia of the left ventricle and aorta along with stenosis or atresia of the aortic and mitral valves. HLHS represents only ∼4%-8% of all CHDs but accounts for ∼25% of deaths. HLHS is an isolated defect (i.e., iHLHS) in 70% of families, the vast majority of which are simplex. Despite intense investigation, the genetic basis of iHLHS remains largely unknown. We performed exome sequencing on 331 families with iHLHS aggregated from four independent cohorts. A Mendelian-model-based analysis demonstrated that iHLHS was not due to single, large-effect alleles in genes previously reported to underlie iHLHS or CHD in >90% of families in this cohort. Gene-based association testing identified increased risk for iHLHS associated with variation in CAPN2 (p = 1.8 × 10-5), encoding a protein involved in functional adhesion. Functional validation studies in a vertebrate animal model (Xenopus laevis) confirmed CAPN2 is essential for cardiac ventricle morphogenesis and that in vivo loss of calpain function causes hypoplastic ventricle phenotypes and suggest that human CAPN2707C>T and CAPN21112C>T variants, each found in multiple individuals with iHLHS, are hypomorphic alleles. Collectively, our findings show that iHLHS is typically not a Mendelian condition, demonstrate that CAPN2 variants increase risk of iHLHS, and identify a novel pathway involved in HLHS pathogenesis.


Subject(s)
Hypoplastic Left Heart Syndrome , Animals , Humans , Hypoplastic Left Heart Syndrome/genetics , Alleles , Aorta , Calpain/genetics , Cerebral Ventricles
3.
J Cyst Fibros ; 22(5): 857-863, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37217389

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa (Pa) infection in cystic fibrosis (CF) is characterized in stages: never (prior to first positive culture) to incident (first positive culture) to chronic. The association of Pa infection stage with lung function trajectory is poorly understood and the impact of age on this association has not been examined. We hypothesized that FEV1 decline would be slowest prior to Pa infection, intermediate after incident infection and greatest after chronic Pa infection. METHODS: Participants in a large US prospective cohort study diagnosed with CF prior to age 3 contributed data through the U.S. CF Patient Registry. Cubic spline linear mixed effects models were used to evaluate the longitudinal association of Pa stage (never, incident, chronic using 4 different definitions) with FEV1 adjusted for relevant covariates. Models contained interaction terms between age and Pa stage. RESULTS: 1,264 subjects born 1992-2006 provided a median 9.5 (IQR 0.25 to 15.75) years of follow up through 2017. 89% developed incident Pa; 39-58% developed chronic Pa depending on the definition. Compared to never Pa, incident Pa infection was associated with greater annual FEV1 decline and chronic Pa infection with the greatest FEV1 decline. The most rapid FEV1 decline and strongest association with Pa infection stage was seen in early adolescence (ages 12-15). CONCLUSIONS: Annual FEV1 decline worsens significantly with each Pa infection stage in children with CF. Our findings suggest that measures to prevent chronic infection, particularly during the high-risk period of early adolescence, could mitigate FEV1 decline and improve survival.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Adolescent , Humans , Child , Child, Preschool , Cystic Fibrosis/complications , Cystic Fibrosis/diagnosis , Cystic Fibrosis/epidemiology , Pseudomonas Infections/diagnosis , Pseudomonas Infections/epidemiology , Pseudomonas Infections/complications , Prospective Studies , Respiratory Function Tests , Pseudomonas aeruginosa , Lung
4.
Am J Respir Crit Care Med ; 207(10): 1324-1333, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36921087

ABSTRACT

Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/genetics , Genome-Wide Association Study/methods , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Patient Acuity , Lung , Microtubule-Associated Proteins/genetics
5.
J Cyst Fibros ; 21(1): 40-44, 2022 01.
Article in English | MEDLINE | ID: mdl-34393091

ABSTRACT

Chronic Pseudomonas aeruginosa (Pa) infection is associated with increased morbidity and mortality in people with cystic fibrosis (CF). There is no gold standard definition of chronic Pa infection in CF. We compared chronic Pa definitions using encounter-based versus annualized data in the Early Pseudomonas Infection Control (EPIC) Observational study cohort, and subsequently compared annualized chronic Pa definitions across a range of U.S. cohorts spanning decades of CF care. We found that an annualized chronic Pa definition requiring at least 1 Pa+ culture in 3 of 4 consecutive years ("Green 3/4") resulted in chronic Pa metrics similar to established encounter-based modified Leeds criteria definitions, including a similar age at and proportion who fulfilled chronic Pa criteria, and a similar proportion with sustained Pa infection after meeting the chronic Pa definition. The Green 3/4 chronic Pa definition will be valuable for longitudinal analyses in cohorts with limited culture frequency.


Subject(s)
Cystic Fibrosis/microbiology , Pseudomonas Infections/diagnosis , Terminology as Topic , Child , Child, Preschool , Chronic Disease , Cohort Studies , Humans , Infant , Pseudomonas aeruginosa , Registries , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...