Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 136(26): 9396-403, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24888581

ABSTRACT

ATP-dependent binding of the chaperonin GroEL to its cofactor GroES forms a cavity in which encapsulated substrate proteins can fold in isolation from bulk solution. It has been suggested that folding in the cavity may differ from that in bulk solution owing to steric confinement, interactions with the cavity walls, and differences between the properties of cavity-confined and bulk water. However, experimental data regarding the cavity-confined water are lacking. Here, we report measurements of water density and diffusion dynamics in the vicinity of a spin label attached to a cysteine in the Tyr71 → Cys GroES mutant obtained using two magnetic resonance techniques: electron-spin echo envelope modulation and Overhauser dynamic nuclear polarization. Residue 71 in GroES is fully exposed to bulk water in free GroES and to confined water within the cavity of the GroEL-GroES complex. Our data show that water density and translational dynamics in the vicinity of the label do not change upon complex formation, thus indicating that bulk water-exposed and cavity-confined GroES surface water share similar properties. Interestingly, the diffusion dynamics of water near the GroES surface are found to be unusually fast relative to other protein surfaces studied. The implications of these findings for chaperonin-assisted folding mechanisms are discussed.


Subject(s)
Chaperonin 10/chemistry , Chaperonin 60/chemistry , Base Sequence , Chaperonin 10/genetics , Chaperonin 10/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Folding , Spin Labels , Water/metabolism
2.
J Phys Chem B ; 116(1): 179-88, 2012 Jan 12.
Article in English | MEDLINE | ID: mdl-22091896

ABSTRACT

Studies of membrane peptide interactions at the molecular level are important for understanding essential processes such as membrane disruption or fusion by membrane active peptides. In a previous study, we combined several electron paramagnetic resonance (EPR) techniques, particularly continuous wave (CW) EPR, electron spin echo envelope modulation (ESEEM), and double electron-electron resonance (DEER) with Monte Carlo (MC) simulations to probe the conformation, insertion depth, and orientation with respect to the membrane of the membrane active peptide melittin. Here, we combined these EPR techniques with cryogenic transmission electron microscopy (cryo-TEM) to examine the effect of the peptide/phospholipid (P/PL) molar ratio, in the range of 1:400 to 1:25, on the membrane shape, lipids packing, and peptide orientation and penetration. Large unilamellar vesicles (LUVs) of DPPC/PG (7:3 dipalmitoylphosphatidylcholine/egg phosphatidylglycerol) were used as model membranes. Spin-labeled peptides were used to probe the peptide behavior whereas spin-labeled phspholipids were used to examine the membrane properties. The cryo-TEM results showed that melittin causes vesicle rupture and fusion into new vesicles with ill-defined structures. This new state was investigated by the EPR methods. In terms of the peptide, CW EPR showed decreased mobility, and ESEEM revealed increased insertion depth as the P/PL ratio was raised. DEER measurements did not reveal specific aggregates of melittin, thus excluding the presence of stable, well-defined pore structures. In terms of membrane properties, the CW EPR reported reduced mobility in both polar head and alkyl chain regions with increasing P/PL. ESEEM measurements showed that, as the P/PL ratio increased, a small increase in water content in the PL headgroup region took place and no change was observed in the alkyl chains part close to the hydrophilic region. In terms of lipid local density, opposite behavior was observed for the polar head and alkyl chain regions with increasing P/PL; while the DPPC density increased in the polar head region, it decreased in the alkyl chain region. These results are consistent with disruption of the lipid order and segregation of the PL constituents of the membrane as a consequence of the melittin binding. This work further demonstrates the applicability and potential of pulse EPR techniques for the study of peptide-membrane interactions.


Subject(s)
Electron Spin Resonance Spectroscopy , Melitten/chemistry , Microscopy, Electron, Transmission , Unilamellar Liposomes/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Monte Carlo Method , Phospholipids/chemistry , Spin Labels
3.
Phys Chem Chem Phys ; 13(22): 10771-80, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21552622

ABSTRACT

We present high field DEER (double electron-electron resonance) distance measurements using Gd(3+) (S = 7/2) spin labels for probing peptides' conformations in solution. The motivation for using Gd(3+) spin labels as an alternative for the standard nitroxide spin labels is the sensitivity improvement they offer because of their very intense EPR signal at high magnetic fields. Gd(3+) was coordinated by dipicolinic acid derivative (4MMDPA) tags that were covalently attached to two cysteine thiol groups. Cysteines were introduced in positions 15 and 27 of the peptide melittin and then two types of spin labeled melittins were prepared, one labeled with two nitroxide spin labels and the other with two 4MMDPA-Gd(3+) labels. Both types were subjected to W-band (95 GHz, 3.5 T) DEER measurements. For the Gd(3+) labeled peptide we explored the effect of the solution molar ratio of Gd(3+) and the labeled peptide, the temperature, and the maximum dipolar evolution time T on the DEER modulation depth. We found that the optimization of the [Gd(3+)]/[Tag] ratio is crucial because excess Gd(3+) masked the DEER effect and too little Gd(3+) resulted in the formation of Gd(3+)-tag(2) complexes, generating peptide dimers. In addition, we observed that the DEER modulation depth is sensitive to spectral diffusion processes even at Gd(3+) concentrations as low as 0.2 mM and therefore experimental conditions should be chosen to minimize it as it decreases the DEER effect. Finally, the distance between the two Gd(3+) ions, 3.4 nm, was found to be longer by 1.2 nm than the distance between the two nitroxides. The origin and implications of this difference are discussed.


Subject(s)
Coordination Complexes/chemistry , Gadolinium/chemistry , Peptides/chemistry , Picolinic Acids/chemistry , Electron Spin Resonance Spectroscopy , Melitten/chemistry , Monte Carlo Method , Spin Labels
4.
J Phys Chem B ; 113(38): 12687-95, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19725508

ABSTRACT

We present a new approach to obtain details on the distribution and average structure and locations of membrane-associated peptides. The approach combines (i) pulse double electron-electron resonance (DEER) to determine intramolecular distances between residues in spin labeled peptides, (ii) electron spin echo envelope modulation (ESEEM) experiments to measure water exposure and the direct interaction of spin labeled peptides with deuterium nuclei on the phospholipid molecules, and (iii) Monte Carlo (MC) simulations to derive the peptide-membrane populations, energetics, and average conformation of the native peptide and mutants mimicking the spin labeling. To demonstrate the approach, we investigated the membrane-bound and solution state of the well-known antimicrobial peptide melittin, used as a model system. A good agreement was obtained between the experimental results and the MC simulations regarding the distribution of distances between the labeled amino acids, the side chain mobility, and the peptide's orientation. A good agreement in the extent of membrane penetration of amino acids in the peptide core was obtained as well, but the EPR data reported a somewhat deeper membrane penetration of the termini compared to the simulations. Overall, melittin adsorbed on the membrane surface, in a monomeric state, as an amphipatic helix with its hydrophobic residues in the hydrocarbon region of the membrane and its charged and polar residues in the lipid headgroup region.


Subject(s)
Membranes, Artificial , Monte Carlo Method , Peptides/chemistry , Amino Acid Sequence , Computer Simulation , Electron Spin Resonance Spectroscopy/methods , Molecular Sequence Data , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL
...