Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 16(5)2024 05 15.
Article in English | MEDLINE | ID: mdl-38793668

ABSTRACT

Neuroinfections rank among the top ten leading causes of child mortality globally, even in high-income countries. The crucial determinants for successful treatment lie in the timing and swiftness of diagnosis. Although viruses constitute the majority of infectious neuropathologies, diagnosing and treating viral neuroinfections remains challenging. Despite technological advancements, the etiology of the disease remains undetermined in over half of cases. The identification of the pathogen becomes more difficult when the infection is caused by atypical pathogens or multiple pathogens simultaneously. Furthermore, the modern surge in global passenger traffic has led to an increase in cases of infections caused by pathogens not endemic to local areas. This review aims to systematize and summarize information on neuroinvasive viral pathogens, encompassing their geographic distribution and transmission routes. Emphasis is placed on rare pathogens and cases involving atypical pathogens, aiming to offer a comprehensive and structured catalog of viral agents with neurovirulence potential.


Subject(s)
Viruses , Humans , Viruses/classification , Viruses/genetics , Viruses/pathogenicity , Viruses/isolation & purification , Virus Diseases/virology , Animals
2.
Microbiol Spectr ; 10(4): e0051622, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35862966

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is an alternative to PCR that is faster and requires fewer resources. Here, we describe two LAMP assays for the detection of human adenoviruses in the feces of children with acute intestinal infections. We designed сolorimetric LAMP (c-LAMP) and real-time LAMP (f-LAMP) with fluorescent probes to detect the DNA of the adenovirus F human adenovirus 40/41 (hAdV40/41) hexon gene. The detection limit of both developed methods was 103 copies/mL, which is comparable to the sensitivity of PCR. The specificities of both c-LAMP and f-LAMP were high, with no false-positive results for clinical samples that do not contain adenovirus F, when testing other viruses and microorganisms. Comparative tests of PCR and LAMP on clinical samples from patients with acute gastroenteritis were carried out. For all samples with a PCR threshold cycle (CT) of up to 36, the PCR and LAMP results completely coincided; however, at low viral loads, the diagnostic sensitivity of LAMP, especially c-LAMP with colorimetric detection, was inferior to that of PCR. The combination of LAMP with modern methods of nucleic acid extraction, both in manual and automatic modes, can reduce the time for a complete study, including extraction of nucleic acid material and amplification, to 60 min. IMPORTANCE In April 2022, several cases of acute hepatitis of unknown origin were reported in children from 12 countries. In many cases, enteric adenovirus or SARS-CoV-2 and adenovirus coinfection were detected. It is known that human adenoviruses can cause different infections of varying severity, from asymptomatic to severe cases with lethal outcomes. There is a need to increase the diagnostic capabilities of clinical laboratories to identify such an underestimated pathogen as adenovirus. Although PCR remains the gold standard for pathogen detection, this method requires specialized equipment and has a long turnaround time to process samples. Previously, LAMP assays for the detection of human adenovirus have been based on measuring the turbidity, the fluorescence of intercalated dyes, or electrophoretic separation. Herein, we present LAMP-based assays with colorimetric or fluorescent detection and perform a detailed assessment of their sensitivity, specificity, and diagnostic performance.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , COVID-19 , Nucleic Acids , Adenoviridae Infections/diagnosis , Adenoviruses, Human/genetics , Child , Feces , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques , SARS-CoV-2 , Sensitivity and Specificity
3.
Front Immunol ; 11: 320, 2020.
Article in English | MEDLINE | ID: mdl-32194560

ABSTRACT

Primary immunodeficiency diseases (PID) area heterogeneous group of disorders caused by genetic defects of the immune system, which manifest clinically as recurrent infections, autoimmune diseases or malignancies. Early detection of PID remains a challenge, particularly in older children with milder and less specific symptoms. This study aimed to assess TREC and KREC diagnostic ability in PID. Data from children assessed by clinical immunologists at Speransky Children's Hospital, Moscow, Russia with suspected immunodeficiencies were analyzed between May 2013 and August 2016. Peripheral blood samples were sent for TREC/KREC, flow cytometry (CD3, CD4, CD8 and CD19), IgA and IgG analysis. A total of 434 children [189 healthy, 97 with group I and II PID (combined T and B cell immunodeficiencies & well-defined syndromes with immunodeficiency) and 148 group III PID (predominantly antibody deficiencies)] were included. Area under the curve (AUC) for TREC in PID groups I and II diagnosis reached 0.82 (CI = 0.75-0.90), with best model providing sensitivity of 65% and specificity of 92%. Neither TREC, nor KREC had added value in PID group III diagnosis. In this study, the predictive value of TREC and KREC in PID diagnosis was examined. We found that the TREC had some diagnostic utility for groups I and II PID. Possibly, addition of TREC measurements to existing clinical diagnostic algorithms may improve their predictive value. Further investigations on a larger cohort are needed to evaluate TREC/KREC abilities to be used as diagnostic tools on a wider scale.


Subject(s)
DNA, Circular/blood , Gene Rearrangement, B-Lymphocyte , Gene Rearrangement, T-Lymphocyte , Severe Combined Immunodeficiency/blood , Area Under Curve , Biomarkers , Child , Child, Preschool , DNA, Circular/genetics , Early Diagnosis , Female , Flow Cytometry , Humans , Immunoglobulins/blood , Infant , Infant, Newborn , Lymphocyte Count , Male , Prospective Studies , ROC Curve , Sensitivity and Specificity , Severe Combined Immunodeficiency/diagnosis
4.
Eur J Clin Microbiol Infect Dis ; 39(2): 257-263, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31655931

ABSTRACT

The aim of this study was to assess which Mycoplasma pneumoniae genotypes were present in Moscow during the years 2015-2018 and whether the proportion between detected genotypes changed over time. We were also interested in the presence of macrolide resistance (MR)Mycoplasma pneumoniae. We performed multilocus variable-number tandem-repeat (VNTR) analysis (MLVA), SNP typing, and mutation typing in the 23S rRNA gene from 117 M. pneumoniae clinical isolates. Our analysis suggests two major MLVA types: 4572 and 3562. In 2017-2018, MLVA type 4572 gradually became predominant. In general, the SNP type range is the same as described earlier for European countries. The analysis of MR mutations showed that 7% of the isolates had an A2063G mutation in the 23S rRNA gene with no isolates carrying an A2064G mutation. In 2017-2018, MLVA type 4572 (SNP type 1) begins to spread in Moscow, which was widespread globally, especially in Asian countries. SNP typing of our sample showed higher discriminatory power than MLVA typing.


Subject(s)
Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , History, 21st Century , Humans , Macrolides/pharmacology , Microbial Sensitivity Tests , Moscow/epidemiology , Multilocus Sequence Typing , Mycoplasma pneumoniae/classification , Mycoplasma pneumoniae/drug effects , Pneumonia, Mycoplasma/history , Polymorphism, Single Nucleotide , Public Health Surveillance , RNA, Ribosomal, 23S/genetics
5.
Front Physiol ; 9: 1877, 2018.
Article in English | MEDLINE | ID: mdl-30719006

ABSTRACT

Primary immunodeficiency diseases (PID) is a heterogeneous group of disorders caused by genetic defects of the immune system, which manifests clinically as recurrent infections, autoimmune diseases, or malignancies. Early detection of other PID remains a challenge, particularly in older children due to milder and less specific symptoms, a low level of clinician PID awareness and poor provision of hospital laboratories with appropriate devices. T-cell recombination excision circles (TREC) and kappa-deleting element recombination circle (KREC) in a dried blood spot and in peripheral blood using real-time polymerase chain reaction (PCR) are used as a tool for severe combined immune deficiency but not in PID. They represent an attractive and cheap target for a more extensive use in clinical practice. This study aimed to assess TREC/KREC correspondence with lymphocyte subpopulations, measured by flow cytometry and evaluate correlations between TREC/KREC, lymphocyte subpopulations and immunoglobulins. We carried out analysis of data from children assessed by clinical immunologists at Speransky Children's Hospital, Moscow, Russia with suspected immunodeficiencies between May 2013 and August 2016. Peripheral blood samples were sent for TREC/KREC, flow cytometry (CD3, CD4, CD8, and CD19), IgA, IgM, and IgG analysis. A total of 839 samples were analyzed for using TREC assay and flow cytometry and 931 KREC/flow cytometry. TREC demonstrated an AUC of 0.73 (95% CI 0.70-0.76) for CD3, 0.74 (95% CI 0.71-0.77) for CD4 and 0.67 (95% CI 0.63-0.70) for CD8, respectively, while KREC demonstrated an AUC of 0.72 (95% CI 0.69-0.76) for CD19. Moderate correlation was found between the levels of TREC and CD4 (r = 0.55, p < 0.01) and KREC with CD19 (r = 0.56, p < 0.01). In this study, promising prediction models were tested. We found that TREC and KREC are able to moderately detect abnormal levels of individual lymphocyte subpopulations. Future research should assess associations between TREC/KREC and other lymphocyte subpopulations and approach TREC/KREC use in PID diagnosis.

6.
Front Immunol ; 8: 807, 2017.
Article in English | MEDLINE | ID: mdl-28791007

ABSTRACT

BACKGROUND: Nijmegen breakage syndrome (NBS) is a combined primary immunodeficiency with DNA repair defect, microcephaly, and other phenotypical features. It predominantly occurs in Slavic populations that have a high frequency of carriers with the causative NBN gene c.657_661del5 mutation. Due to the rarity of the disease in the rest of the world, studies of NBS patients are few. Here, we report a prospective study of a cohort of Russian NBS patients. METHODS: 35 Russian NBS patients of ages 1-19 years, referred to our Center between years 2012 and 2016, were prospectively studied. RESULTS: Despite the fact that in 80% of the patients microcephaly was diagnosed at birth or shortly thereafter, the average delay of NBS diagnosis was 6.5 years. Though 80% of the patients had laboratory signs of immunodeficiency, only 51% of the patients experienced significant infections. Autoimmune complications including interstitial lymphocytic lung disease and skin granulomas were noted in 34%, malignancies-in 57% of the patients. T-cell excision circle (TREC)/kappa-deleting recombination excision circle (KREC) levels were low in the majority of patients studied. Lower KREC levels correlated with autoimmune and oncological complications. Fifteen patients underwent hematopoietic stem cell transplantation (HSCT), 10 of them were alive and well, with good graft function. Three patients in the HSCT group and five non-transplanted patients died; tumor progression being the main cause of death. The probability of the overall survival since NBS diagnosis was 0.76 in the HSCT group and 0.3 in the non-transplanted group. CONCLUSION: Based on our findings of low TRECs in most NBS patients, independent of their age, TREC detection can be potentially useful for detection of NBS patients during neonatal screening. KREC concentration can be used as a prognostic marker of disease severity. HSCT is a viable treatment option in NBS and should be especially considered in patients with low KREC numbers early on, before development of life-threatening complications.

7.
PLoS One ; 8(1): e54835, 2013.
Article in English | MEDLINE | ID: mdl-23382983

ABSTRACT

Sanger sequencing is a common method of reading DNA sequences. It is less expensive than high-throughput methods, and it is appropriate for numerous applications including molecular diagnostics. However, sequencing mixtures of similar DNA of pathogens with this method is challenging. This is important because most clinical samples contain such mixtures, rather than pure single strains. The traditional solution is to sequence selected clones of PCR products, a complicated, time-consuming, and expensive procedure. Here, we propose the base-calling with vocabulary (BCV) method that computationally deciphers Sanger chromatograms obtained from mixed DNA samples. The inputs to the BCV algorithm are a chromatogram and a dictionary of sequences that are similar to those we expect to obtain. We apply the base-calling function on a test dataset of chromatograms without ambiguous positions, as well as one with 3-14% sequence degeneracy. Furthermore, we use BCV to assemble a consensus sequence for an HIV genome fragment in a sample containing a mixture of viral DNA variants and to determine the positions of the indels. Finally, we detect drug-resistant Mycobacterium tuberculosis strains carrying frameshift mutations mixed with wild-type bacteria in the pncA gene, and roughly characterize bacterial communities in clinical samples by direct 16S rRNA sequencing.


Subject(s)
Algorithms , Computational Biology/methods , Sequence Analysis, DNA , Genotype , HIV-1/genetics , Hepatitis Viruses/classification , Hepatitis Viruses/genetics , Humans , INDEL Mutation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Phylogeny , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL
...