Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 14(14): 1049-1070, 2022 07.
Article in English | MEDLINE | ID: mdl-35707942

ABSTRACT

Aim: This study reports the designing of BChE inhibitors through machine learning (ML), followed by in silico and in vitro evaluations. Methodology: ML technique was used to predict the virtual hit, and its derivatives were synthesized and characterized. The compounds were evaluated by using various in vitro tests and in silico methods. Results: The gradient boosting classifier predicted N-phenyl-4-(phenylsulfonamido) benzamide as an active BChE inhibitor. The derivatives of the inhibitor, i.e., compounds 34, 37 and 54 were potent BChE inhibitors and displayed blood-brain barrier permeability with no significant AChE inhibition. Conclusion: The ML prediction was effective, and the synthesized compounds showed the BChE inhibitory activity, which was also supported by the in silico studies.


Subject(s)
Butyrylcholinesterase , Cholinesterase Inhibitors , Cholinesterase Inhibitors/pharmacology , Machine Learning , Sulfonamides/pharmacology
2.
Int J Biol Macromol ; 203: 195-211, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35090939

ABSTRACT

Butyrylcholinesterase (BChE), a hydrolytic enzyme, is responsible for the termination of the action of acetylcholine besides acetylcholinesterase (AChE) in the synaptic cleft of the brain. The alteration in the enzyme level, in patients with the progression of Alzheimer's disease, makes it a therapeutic target. In the present study, we developed BChE inhibitors through scaffold hopping by exploring two previously reported compounds, i.e., 1,4-bis((4-chlorophenyl) sulfonyl)-3,6-diphenylpiperazine-2,5-dione and N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide, to afford scaffold and pharmacophore fragments, respectively. The N,2-diphenyl-2-(phenylsulfonamido)acetamide derivatives, thus designed, were synthesised and screened for the inhibition of AChE and BChE enzymes. Compounds 30 and 33 were found to be most active against BChE among the derivatives, with IC50 values of 7.331 ± 0.946 and 10.964 ± 0.936 µM, respectively. The compounds displayed a non-competitive mode of inhibition along with BBB permeability and good cell viability on SH-SY5Y cell line. The molecular docking analysis of the compounds with BChE showed interactions with Trp82, Trp231, Leu286, and His438. The molecular dynamics study revealed the stability of the protein-ligand complexes.


Subject(s)
Alzheimer Disease , Butyrylcholinesterase , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/metabolism , Humans , Molecular Docking Simulation , Structure-Activity Relationship , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...