Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 109(7): 1369-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492259

ABSTRACT

BACKGROUND AND AIMS: The smoke-derived chemical karrikinolide (KAR(1)) shows potential as a tool to synchronize the germination of seeds for weed management and restoration. To assess its feasibility we need to understand why seeds from different populations of a species exhibit distinct responses to KAR(1). Environmental conditions during seed development, known as the parental environment, influence seed dormancy so we predicted that parental environment would also drive the KAR(1)-responses of seeds. Specifically, we hypothesized that (a) a common environment will unify the KAR(1)-responses of different populations, (b) a single population grown under different environmental conditions will exhibit different KAR(1)-responses, and (c) drought stress, as a particular feature of the parental environment, will make seeds less dormant and more responsive to KAR(1). METHODS: Seeds of the weed Brassica tournefortii were collected from four locations in Western Australia and were sown in common gardens at two field sites, to test whether their KAR(1)-responses could be unified by a common environment. To test the effects of drought on KAR(1)-response, plants were grown in a glasshouse and subjected to water stress. For each trial, the germination responses of the next generation of seeds were assessed. KEY RESULTS: The KAR(1)-responses of seeds differed among populations, but this variation was reduced when seeds developed in a common environment. The KAR(1)-responses of each population changed when seeds developed in different environments. Different parental environments affected germination responses of the populations differently, showing that parental environment interacts with genetics to determine KAR(1)-responses. Seeds from droughted plants were 5 % more responsive to KAR(1) and 5 % less dormant than seeds from well-watered plants, but KAR(1)-responses and dormancy state were not intrinsically linked in all experiments. CONCLUSIONS: The parental environment in which seeds develop is one of the key drivers of the KAR(1)-responses of seeds.


Subject(s)
Brassica/embryology , Furans/metabolism , Pyrans/metabolism , Seeds , Brassica/physiology , Droughts , Germination
SELECTION OF CITATIONS
SEARCH DETAIL
...