Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 105(6): 065301, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20867987

ABSTRACT

We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory. Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.

2.
J Chem Phys ; 125(20): 204110, 2006 Nov 28.
Article in English | MEDLINE | ID: mdl-17144693

ABSTRACT

Since the classic work of Roothaan [Rev. Mod. Phys. 32, 179 (1960)], the one-electron energies of a ROHF method are known as ambiguous quantities having no physical meaning. Together with this, it is often assumed in present-day computational studies that Koopmans' theorem is valid in a ROHF method. In this work we analyze the specific dependence of orbital energies on the choice of the basic equations in a ROHF method which are the Euler equations and different forms of the generalized Hartree-Fock equation. We first prove that the one-electron open-shell energies epsilon(m) derived by the Euler equations can be related to the respective ionization potentials I(m) via the modified Koopmans' formula I(m)= -epsilon(m)f(m) where f(m) is an occupation number. As compared to this, neither the closed-shell orbital energies nor the virtual ones derived by the Euler equations can be related to the respective ionization potentials and electron affinities via Koopmans' theorem. Based on this analysis, we derive the new (canonical) form for the Hamiltonian of the Hartree-Fock equation, the eigenvalues of which obey Koopmans' theorem for the whole energy spectrum. A discussion of new orbital energies is presented on the examples of a free N atom and an endohedral N@C(60) (I(h)). The vertical ionization potentials and electron affinities estimated via Koopmans' theorem are compared with the respective observed data and, for completeness, with the respective estimates derived via a DeltaSCF method. The agreement between observed data and their estimates via Koopmans' theorem is qualitative and, in general, appears to possess the same accuracy level as in the closed-shell SCF.

SELECTION OF CITATIONS
SEARCH DETAIL