Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 7362, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963924

ABSTRACT

We report on single-molecule nanopore sensing combined with position-encoded DNA molecular probes, with chemistry tuned to simultaneously identify various antigen proteins and multiple RNA gene fragments of SARS-CoV-2 with high sensitivity and selectivity. We show that this sensing strategy can directly detect spike (S) and nucleocapsid (N) proteins in unprocessed human saliva. Moreover, our approach enables the identification of RNA fragments from patient samples using nasal/throat swabs, enabling the identification of critical mutations such as D614G, G446S, or Y144del among viral variants. In particular, it can detect and discriminate between SARS-CoV-2 lineages of wild-type B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.539 (Omicron) within a single measurement without the need for nucleic acid sequencing. The sensing strategy of the molecular probes is easily adaptable to other viral targets and diseases and can be expanded depending on the application required.


Subject(s)
Antigens, Viral , Nanopores , Humans , Antigens, Viral/genetics , Molecular Probes , RNA , RNA, Viral/genetics
2.
Cells ; 12(19)2023 10 04.
Article in English | MEDLINE | ID: mdl-37830615

ABSTRACT

A cell's mechanical properties have been linked to cancer development, motility and metastasis and are therefore an attractive target as a universal, reliable cancer marker. For example, it has been widely published that cancer cells show a lower Young's modulus than their non-cancerous counterparts. Furthermore, the effect of anti-cancer drugs on cellular mechanics may offer a new insight into secondary mechanisms of action and drug efficiency. Scanning ion conductance microscopy (SICM) offers a nanoscale resolution, non-contact method of nanomechanical data acquisition. In this study, we used SICM to measure the nanomechanical properties of melanoma cell lines from different stages with increasing metastatic ability. Young's modulus changes following treatment with the anti-cancer drugs paclitaxel, cisplatin and dacarbazine were also measured, offering a novel perspective through the use of continuous scan mode SICM. We found that Young's modulus was inversely correlated to metastatic ability in melanoma cell lines from radial growth, vertical growth and metastatic phases. However, Young's modulus was found to be highly variable between cells and cell lines. For example, the highly metastatic cell line A375M was found to have a significantly higher Young's modulus, and this was attributed to a higher level of F-actin. Furthermore, our data following nanomechanical changes after 24 hour anti-cancer drug treatment showed that paclitaxel and cisplatin treatment significantly increased Young's modulus, attributed to an increase in microtubules. Treatment with dacarbazine saw a decrease in Young's modulus with a significantly lower F-actin corrected total cell fluorescence. Our data offer a new perspective on nanomechanical changes following drug treatment, which may be an overlooked effect. This work also highlights variations in cell nanomechanical properties between previous studies, cancer cell lines and cancer types and questions the usefulness of using nanomechanics as a diagnostic or prognostic tool.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Actins , Cisplatin/pharmacology , Cisplatin/therapeutic use , Microscopy, Atomic Force/methods , Melanoma/drug therapy , Antineoplastic Agents/pharmacology , Dacarbazine/pharmacology , Paclitaxel/pharmacology
3.
Bioeng Transl Med ; 8(4): e10425, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37476059

ABSTRACT

Clathrin-mediated endocytosis (CME) is an essential cell physiological process of broad biomedical relevance. Since the recent introduction of Pitstop-2 as a potent CME inhibitor, we and others have reported on substantial clathrin-independent inhibitory effects. Herein, we developed and experimentally validated a novel fluorescent derivative of Pitstop-2, termed RVD-127, to clarify Pitstop-2 diverse effects. Using RVD-127, we were able to trace additional protein targets of Pitstop-2. Besides inhibiting CME, Pitstop-2 and RVD-127 proved to directly and reversibly bind to at least two members of the small GTPase superfamily Ran and Rac1 with particularly high efficacy. Binding locks the GTPases in a guanosine diphosphate (GDP)-like conformation disabling their interaction with their downstream effectors. Consequently, overall cell motility, mechanics and nucleocytoplasmic transport integrity are rapidly disrupted at inhibitor concentrations well below those required to significantly reduce CME. We conclude that Pitstop-2 is a highly potent, reversible inhibitor of small GTPases. The inhibition of these molecular switches of diverse crucial signaling pathways, including nucleocytoplasmic transport and overall cell dynamics and motility, clarifies the diversity of Pitstop-2 activities. Moreover, considering the fundamental importance and broad implications of small GTPases in physiology, pathophysiology and drug development, Pitstop-2 and RVD-127 open up novel avenues.

4.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298101

ABSTRACT

Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy ß-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Radiopharmaceuticals/chemistry , Copper , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy
5.
Dalton Trans ; 52(4): 866-871, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36629146

ABSTRACT

A design of Pt(IV) prodrugs with tumor cell targeting moieties leading to increased selectivity is of interest. Herein, we designed a novel Pt(IV) prodrugs with COX-inhibitor naproxen, long-chain hydrophobic stearic acid moiety and biotin as axial ligands. We have established that for Pt(IV) prodrugs with biotin and naproxen or stearate in axial position, the lipophilicity rather than biotin receptors expression is the main factor of cytotoxicity. We also monitored the reduction speed of Pt(IV) prodrug 3 with naproxen and biotin in axial positions in A549 cells using XANES and demonstrated that the prodrug gradually releases cisplatin within 20 hours of incubation.


Subject(s)
Antineoplastic Agents , Prodrugs , Prodrugs/chemistry , Antineoplastic Agents/chemistry , Naproxen , Biotin/chemistry , Cisplatin/pharmacology , Cell Line, Tumor
6.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675233

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by ß-amyloid (Aß) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.


Subject(s)
Alzheimer Disease , Chemical and Drug Induced Liver Injury , Humans , Tacrine/pharmacology , Tacrine/therapeutic use , Tacrine/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Cholinesterase Inhibitors/chemistry , Amyloid beta-Peptides/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Acetylcholinesterase/metabolism
7.
J Nanobiotechnology ; 20(1): 497, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36424605

ABSTRACT

Reactive oxygen/nitrogen species (ROS/RNS) are formed during normal cellular metabolism and contribute to its regulation, while many pathological processes are associated with ROS/RNS imbalances. Modern methods for measuring ROS/RNS are mainly based on the use of inducible fluorescent dyes and protein-based sensors, which have several disadvantages for in vivo use. Intravital electrochemical nanosensors can be used to quantify ROS/RNS with high sensitivity without exogenous tracers and allow dynamic ROS/RNS measurements in vivo. Here, we developed a method for quantifying total ROS/RNS levels in the liver and evaluated our setup in live mice using three common models of liver disease associated with ROS activation: acute liver injury with CCl4, partial hepatectomy (HE), and induced hepatocellular carcinoma (HCC). We have demonstrated using intravital electrochemical detection that any exposure to the peritoneum in vivo leads to an increase in total ROS/RNS levels, from a slight increase to an explosion, depending on the procedure. Analysis of the total ROS/RNS level in a partial hepatectomy model revealed oxidative stress, both in mice 24 h after HE and in sham-operated mice. We quantified dose-dependent ROS/RNS production in CCl4-induced injury with underlying neutrophil infiltration and cell death. We expect that in vivo electrochemical measurements of reactive oxygen/nitrogen species in the liver may become a routine approach that provides valuable data in research and preclinical studies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Oxygen , Nitrogen
8.
Pharmaceuticals (Basel) ; 15(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35631390

ABSTRACT

Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.

9.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613679

ABSTRACT

Currently, more than 55 million people live with dementia worldwide, and there are nearly 10 million new cases every year. Alzheimer's disease (AD) is the most common neurodegenerative disease resulting in personality changes, cognitive impairment, memory loss, and physical disability. Diagnosis of AD is often missed or delayed in clinical practice due to the fact that cognitive deterioration occurs already in the later stages of the disease. Thus, methods to improve early detection would provide opportunities for early treatment of disease. All FDA-approved PET imaging agents for Aß plaques use short-lived radioisotopes such as 11C (t1/2 = 20.4 min) and 18F (t1/2 = 109.8 min), which limit their widespread use. Thus, a novel metal-based imaging agent for visualization of Aß plaques is of interest, due to the simplicity of its synthesis and the longer lifetimes of its constituent isotopes. We have previously summarized a metal-containing drug for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. In this review, we have summarized a recent advance in design of Aß-targeting bifunctional chelators for potential therapeutic and PET imaging applications, reported after our previous review.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/drug therapy , Chelating Agents , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods , Amyloid beta-Peptides
11.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917027

ABSTRACT

A chemo-anti-inflammatory strategy is of interest for the treatment of aggressive cancers. The platinum (IV) prodrug with non-steroidal anti-inflammatory drugs (NSAIDs) as axial ligands is designed to efficiently enter tumor cells due to high lipophilicity and release the cytotoxic metabolite and NSAID intracellularly, thereby reducing side effects and increasing the therapeutic efficacy of platinum chemotherapy. Over the last 7 years, a number of publications have been devoted to the design of such Pt(IV) prodrugs in combination with anti-inflammatory chemotherapy, with high therapeutic efficacy in vitro and In vivo. In this review, we summarize the studies devoted to the development of Pt(IV) prodrugs with NSAIDs as axial ligands, the study of the mechanism of their cytotoxic action and anti-inflammatory activity, the structure-activity ratio, and therapeutic efficacy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Prodrugs , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Drug Evaluation, Preclinical , Humans , Ligands , Structure-Activity Relationship
12.
Biomedicines ; 9(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917028

ABSTRACT

Inflammatory eye diseases remain the most common clinical problem in ophthalmology. The secondary processes associated with inflammation, such as overproduction of reactive oxygen species (ROS) and exhaustion of the endogenous antioxidant system, frequently lead to tissue degeneration, vision blurring, and even blindness. Antioxidant enzymes, such as copper-zinc superoxide dismutase (SOD1), could serve as potent scavengers of ROS. However, their delivery into the eye compartments represents a major challenge due to the limited ocular penetration. This work presents a new therapeutic modality specifically formulated for the eye on the basis of multilayer polyion complex nanoparticles of SOD1 (Nano-SOD1), which is characterized by appropriate storage stability and pronounced therapeutic effect without side reactions such as eye irritation; acute, chronic, and reproductive toxicity; allergenicity; immunogenicity; mutagenicity even at high doses. The ability of Nano-SOD1 to reduce inflammatory processes in the eye was examined in vivo in rabbits with a model immunogenic uveitis-the inflammation of the inner vascular tract of the eye. It was shown during preclinical studies that topical instillations of Nano-SOD1 were much more effective compared to the free enzyme in decreasing uveitis manifestations. In particular, we noted statistically significant differences in such inflammatory signs in the eye as corneal and conjunctival edema, iris hyperemia, and fibrin clots. Moreover, Nano-SOD1 penetrates into interior eye structures more effectively than SOD itself and retains enzyme activity in the eye for a much longer period of time, decreasing inflammation and restoring antioxidant activity in the eye. Thus, the presented Nano-SOD1 can be considered as a potentially useful therapeutic agent for the treatment of ocular inflammatory disorders.

13.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35009988

ABSTRACT

Magnetic nanoparticles (MNPs) are widely considered for cancer treatment, in particular for magnetic hyperthermia (MHT). Thereby, MNPs are still being optimized for lowest possible toxicity on organisms while the magnetic properties are matched for best heating capabilities. In this study, the biocompatibility of 12 nm cobalt ferrite MNPs, functionalized with citrate ions, in different dosages on mice and rats of both sexes was investigated for 30 days after intraperitoneal injection. The animals' weight, behavior, and blood cells changes, as well as blood biochemical parameters are correlated to histological examination of organs revealing that cobalt ferrite MNPs do not have toxic effects at concentrations close to those used previously for efficient MHT. Moreover, these MNPs demonstrated high specific loss power (SLP) of about 400 W g-1. Importantly the MNPs retained their magnetic properties inside tumor tissue after intratumoral administration for several MHT cycles within three days. Thus, cobalt ferrite MNPs represent a perspective platform for tumor therapy by MHT due to their ability to provide effective heating without exerting a toxic effect on the organism. This opens up new avenues for smaller MNPs sizes while their heating efficiency is maintained.

14.
Nanomedicine ; 32: 102317, 2021 02.
Article in English | MEDLINE | ID: mdl-33096245

ABSTRACT

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.


Subject(s)
Drug Delivery Systems , Magnetite Nanoparticles/chemistry , Membrane Proteins/pharmacology , Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Line, Tumor , Endocytosis/drug effects , Female , Hydrogen-Ion Concentration , Magnetic Resonance Imaging , Magnetite Nanoparticles/ultrastructure , Mice, Inbred BALB C , Neoplasms/diagnostic imaging , Polyethylene Glycols/chemistry , Spheroids, Cellular/drug effects
15.
Int J Mol Sci ; 21(23)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276505

ABSTRACT

One of the hallmarks of Alzheimer's disease (AD) is the deposition of amyloid plaques in the brain parenchyma, which occurs 7-15 years before the onset of cognitive symptoms of the pathology. Timely diagnostics of amyloid formations allows identifying AD at an early stage and initiating inhibitor therapy, delaying the progression of the disease. However, clinically used radiopharmaceuticals based on 11C and 18F are synchrotron-dependent and short-lived. The design of new metal-containing radiopharmaceuticals for AD visualization is of interest. The development of coordination compounds capable of effectively crossing the blood-brain barrier (BBB) requires careful selection of a ligand moiety, a metal chelating scaffold, and a metal cation, defining the method of supposed Aß visualization. In this review, we have summarized metal-containing drugs for positron emission tomography (PET), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) imaging of Alzheimer's disease. The obtained data allow assessing the structure-ability to cross the BBB ratio.


Subject(s)
Alzheimer Disease/diagnosis , Brain/diagnostic imaging , Brain/metabolism , Diagnostic Imaging , Metals , Diagnostic Imaging/methods , Female , Humans , Metals/chemistry , Metals/metabolism , Multimodal Imaging/methods , Neuroimaging , Structure-Activity Relationship
16.
Int J Mol Sci ; 21(11)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486510

ABSTRACT

Copper-containing coordination compounds attract wide attention due to the redox activity and biogenicity of copper ions, providing multiple pathways of biological activity. The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents, constituting a less expensive and safer alternative to classical platinum-containing chemotherapy, and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory drugs. 64Сu-labeled coordination compounds are promising PET imaging agents for diagnosing malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer's disease amyloid-ß (Aß). In this review article, we summarize different strategies for possible use of coordination compounds in the treatment and diagnosis of various diseases, and also various studies of the mechanisms of antitumor and antimicrobial action.


Subject(s)
Amyloid beta-Peptides/chemistry , Biological Factors/chemistry , Copper/chemistry , Alzheimer Disease/drug therapy , Animals , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Design , Drug Evaluation, Preclinical , Flow Cytometry , HEK293 Cells , Humans , Inhibitory Concentration 50 , Ions , Isotopes/chemistry , Ligands , MCF-7 Cells , Mycobacterium tuberculosis , Oxidation-Reduction , Positron-Emission Tomography , Spectrophotometry , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Tuberculosis/drug therapy
17.
Bioconjug Chem ; 31(5): 1313-1319, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32379426

ABSTRACT

Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.


Subject(s)
Asialoglycoprotein Receptor/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Alkynes/chemistry , Asialoglycoprotein Receptor/chemistry , Azides , Chemistry Techniques, Synthetic , Drug Design , Esterification , Galactosamine/chemistry , Hep G2 Cells , Humans , Ligands , Methane/chemical synthesis , Methane/chemistry , Methane/metabolism , Methane/pharmacology , Molecular Docking Simulation , PC-3 Cells , Protein Conformation
18.
J Mol Recognit ; 33(9): e2846, 2020 09.
Article in English | MEDLINE | ID: mdl-32212219

ABSTRACT

We have developed a model for evaluating the integral intercellular interactions in the "endotheliocyte-neutrophil" system and have shown the high variability of adhesion contacts in different donors associated with different expression profiles of neutrophils. Two methods (forсe spectroscopy-spectroscopy and scanning ion-conductance microscopy) showed a decrease in the rigidity of the membrane-cytoskeletal complex of neutrophils under the influence of Staphylococcus aureus 2879 M. Adding this strain to the "endotheliocyte-neutrophil" system caused a statistically significant decrease in the adhesion force and adhesion work, which indicates a change in the expression profile and physicochemical properties of membranes of both types of interacting cells (neutrophils and endotheliocytes).


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/microbiology , Neutrophils/cytology , Neutrophils/microbiology , Staphylococcus aureus/physiology , Adult , Cell Adhesion , Cell Communication , Cell Line , Humans , Microscopy , Young Adult
19.
Nanomedicine ; 25: 102171, 2020 04.
Article in English | MEDLINE | ID: mdl-32084594

ABSTRACT

Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.


Subject(s)
Breast Neoplasms/therapy , Cell Proliferation/drug effects , Colonic Neoplasms/therapy , Magnetic Field Therapy , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cobalt/chemistry , Cobalt/pharmacology , Colonic Neoplasms/pathology , Disease Models, Animal , Female , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Humans , Hyperthermia, Induced/methods , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/therapeutic use , Mice , Neoplasm Metastasis , Temperature
20.
Nat Commun ; 10(1): 5610, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811139

ABSTRACT

Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells.


Subject(s)
Imaging, Three-Dimensional/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Single-Cell Analysis/methods , Biophysics , Cell Line, Tumor , Diatoms/cytology , Humans , Hydrogen-Ion Concentration , Melanoma , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...