Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(9): e2305367, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38100279

ABSTRACT

In organic semiconductors, a donor/acceptor heterojunction is typically required for efficient dissociation of excitons. Using transient absorption spectroscopy to study the dynamics of excited states in non-fullerene acceptors (NFAs), it is shown that NFAs can generate charges without a donor/acceptor interface. This is due to the fact that dielectric solvation provides a driving force sufficient to dissociate the excited state and form the charge-transfer (CT) state. The CT state is further dissociated into free charges at interfaces between polycrystalline regions in neat NFAs. For IEICO-4F, incorporating just 9 wt% donor polymer PTB7-Th in neat films greatly boosts charge generation, enhancing efficient exciton separation into free charges. This property is utilized to fabricate donor-dilute organic photovoltaics (OPV) delivering a power conversion efficiency of 8.3% in the case of opaque devices with a metal top-electrode and an active layer average visible transmittance (AVT) of 75%. It is shown that the intrinsic charge generation in low-bandgap NFAs contributes to the overall photocurrent generation. IEICO-4F-based OPVs with limited PTB7-Th content have high thermal resilience demonstrating little drop in performance over 700 h. PTB7-Th:IEICO-4F semitransparent OPVs are leveraged to fabricate an 8-series connected semitransparent module, demonstrating light-utilization efficiency of 2.2% alongside an AVT of 63%.

2.
Nat Commun ; 14(1): 4608, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528112

ABSTRACT

Non-fullerene based organic solar cells display a high initial power conversion efficiency but continue to suffer from poor thermal stability, especially in case of devices with thick active layers. Mixing of five structurally similar acceptors with similar electron affinities, and blending with a donor polymer is explored, yielding devices with a power conversion efficiency of up to 17.6%. The hexanary device performance is unaffected by thermal annealing of the bulk-heterojunction active layer for at least 23 days at 130 °C in the dark and an inert atmosphere. Moreover, hexanary blends offer a high degree of thermal stability for an active layer thickness of up to 390 nm, which is advantageous for high-throughput processing of organic solar cells. Here, a generic strategy based on multi-component acceptor mixtures is presented that permits to considerably improve the thermal stability of non-fullerene based devices and thus paves the way for large-area organic solar cells.

3.
Adv Mater ; 34(35): e2202575, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35789000

ABSTRACT

The frontier molecular energy levels of organic semiconductors are decisive for their fundamental function and efficiency in optoelectronics. However, the precise determination of these energy levels and their variation when using different techniques makes it hard to compare and establish design rules. In this work, the energy levels of 33 organic semiconductors via cyclic voltammetry (CV), density functional theory, ultraviolet photoelectron spectroscopy, and low-energy inverse photoelectron spectroscopy are determined. Solar cells are fabricated to obtain key device parameters and relate them to the significant differences in the energy levels and offsets obtained from different methods. In contrast to CV, the photovoltaic gap measured using photoelectron spectroscopy (PES) correlates well with the experimental device VOC . It is demonstrated that high-performing systems such as PM6:Y6 and WF3F:Y6, which are previously reported to have negligible ionization energy (IE) offsets (ΔIE), possess sizable ΔIE of ≈0.5 eV, determined by PES. Using various D-A blends, it is demonstrated that ΔIE plays a key role in charge generation. In contrast to earlier reports, it is shown that a vanishing ΔIE is detrimental to device performance. Overall, these findings establish a solid base for reliably evaluating material energetics and interpreting property-performance relationships in organic solar cells.

5.
Nat Mater ; 20(3): 378-384, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33106652

ABSTRACT

In bulk heterojunction (BHJ) organic solar cells (OSCs) both the electron affinity (EA) and ionization energy (IE) offsets at the donor-acceptor interface should equally control exciton dissociation. Here, we demonstrate that in low-bandgap non-fullerene acceptor (NFA) BHJs ultrafast donor-to-acceptor energy transfer precedes hole transfer from the acceptor to the donor and thus renders the EA offset virtually unimportant. Moreover, sizeable bulk IE offsets of about 0.5 eV are needed for efficient charge transfer and high internal quantum efficiencies, since energy level bending at the donor-NFA interface caused by the acceptors' quadrupole moments prevents efficient exciton-to-charge-transfer state conversion at low IE offsets. The same bending, however, is the origin of the barrier-less charge transfer state to free charge conversion. Our results provide a comprehensive picture of the photophysics of NFA-based blends, and show that sizeable bulk IE offsets are essential to design efficient BHJ OSCs based on low-bandgap NFAs.

6.
J Phys Chem Lett ; 11(8): 2838-2845, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32202789

ABSTRACT

Triplet generation in organic solar cells has been considered a major loss channel. Determining the density of the triplet-state population in an operating device is challenging. Here, we employ transient absorption (TA) spectroscopy on the quinoxaline-thiophene copolymer TQ1 blended with PC71BM, quantify the transient charge and triplet-state densities, and parametrize their generation and recombination dynamics. The charge recombination parameters reproduce the experimentally measured current-voltage characteristics in charge carrier drift-diffusion simulations, and they yield the steady-state charge densities. We demonstrate that triplets are formed by both geminate and nongeminate recombination of charge carriers and decay primarily by triplet-triplet annihilation. Using the charge densities in the rate equations describing triplet-state dynamics, we find that triplet-state densities in devices are in the range of charge carrier densities. Despite this substantial triplet-state buildup, TQ1:PC71BM devices exhibit only moderate geminate recombination and significantly reduced nongeminate charge recombination, with reduction factors between 10-4 and 10-3 compared to Langevin recombination.

SELECTION OF CITATIONS
SEARCH DETAIL
...