Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 8(3): 665-706, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18598141

ABSTRACT

Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.


Subject(s)
Extraterrestrial Environment/chemistry , Space Flight/instrumentation , Lasers , Mars , Robotics , Soil/analysis , Ultrasonics , United States , United States National Aeronautics and Space Administration
2.
Science ; 306(5702): 1698-703, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576602

ABSTRACT

The Mars Exploration Rover Opportunity has investigated the landing site in Eagle crater and the nearby plains within Meridiani Planum. The soils consist of fine-grained basaltic sand and a surface lag of hematite-rich spherules, spherule fragments, and other granules. Wind ripples are common. Underlying the thin soil layer, and exposed within small impact craters and troughs, are flat-lying sedimentary rocks. These rocks are finely laminated, are rich in sulfur, and contain abundant sulfate salts. Small-scale cross-lamination in some locations provides evidence for deposition in flowing liquid water. We interpret the rocks to be a mixture of chemical and siliciclastic sediments formed by episodic inundation by shallow surface water, followed by evaporation, exposure, and desiccation. Hematite-rich spherules are embedded in the rock and eroding from them. We interpret these spherules to be concretions formed by postdepositional diagenesis, again involving liquid water.


Subject(s)
Mars , Atmosphere , Evolution, Planetary , Extraterrestrial Environment , Ferric Compounds , Geologic Sediments , Minerals , Silicates , Spacecraft , Water , Wind
3.
Science ; 306(5702): 1730-3, 2004 Dec 03.
Article in English | MEDLINE | ID: mdl-15576608

ABSTRACT

The location of the Opportunity landing site was determined to better than 10-m absolute accuracy from analyses of radio tracking data. We determined Rover locations during traverses with an error as small as several centimeters using engineering telemetry and overlapping images. Topographic profiles generated from rover data show that the plains are very smooth from meter- to centimeter-length scales, consistent with analyses of orbital observations. Solar cell output decreased because of the deposition of airborne dust on the panels. The lack of dust-covered surfaces on Meridiani Planum indicates that high velocity winds must remove this material on a continuing basis. The low mechanical strength of the evaporitic rocks as determined from grinding experiments, and the abundance of coarse-grained surface particles argue for differential erosion of Meridiani Planum.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments , Spacecraft , Wind
4.
Science ; 305(5685): 794-9, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297657

ABSTRACT

The Mars Exploration Rover Spirit and its Athena science payload have been used to investigate a landing site in Gusev crater. Gusev is hypothesized to be the site of a former lake, but no clear evidence for lacustrine sedimentation has been found to date. Instead, the dominant lithology is basalt, and the dominant geologic processes are impact events and eolian transport. Many rocks exhibit coatings and other characteristics that may be evidence for minor aqueous alteration. Any lacustrine sediments that may exist at this location within Gusev apparently have been buried by lavas that have undergone subsequent impact disruption.


Subject(s)
Mars , Atmosphere , Extraterrestrial Environment , Geologic Sediments , Geological Phenomena , Geology , Magnetics , Minerals , Water , Wind
5.
Science ; 305(5685): 810-3, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297660

ABSTRACT

Wind-abraded rocks, ripples, drifts, and other deposits of windblown sediments are seen at the Columbia Memorial Station where the Spirit rover landed. Orientations of these features suggest formative winds from the north-northwest, consistent with predictions from atmospheric models of afternoon winds in Gusev Crater. Cuttings from the rover Rock Abrasion Tool are asymmetrically distributed toward the south-southeast, suggesting active winds from the north-northwest at the time (midday) of the abrasion operations. Characteristics of some rocks, such as a two-toned appearance, suggest that they were possibly buried and exhumed on the order of 5 to 60 centimeters by wind deflation, depending on location.


Subject(s)
Mars , Evolution, Planetary , Extraterrestrial Environment , Wind
6.
Science ; 305(5685): 821-4, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297662

ABSTRACT

The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.


Subject(s)
Mars , Extraterrestrial Environment , Geologic Sediments , Volcanic Eruptions , Water , Wind
7.
Science ; 305(5685): 827-9, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297664

ABSTRACT

The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of approximately 2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.


Subject(s)
Magnetics , Mars , Minerals , Atmosphere , Extraterrestrial Environment , Ferrosoferric Oxide , Geologic Sediments , Iron , Oxides , Water
8.
Science ; 305(5685): 842-5, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297668

ABSTRACT

The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain

Subject(s)
Mars , Minerals , Silicates , Extraterrestrial Environment , Geologic Sediments , Iron Compounds , Magnesium Compounds , Oxides , Spectroscopy, Mossbauer , Spectrum Analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...