Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1321, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079098

ABSTRACT

Bacterial infectious diseases are serious health problem which extends to economic and social complications. Moreover, bacterial antibiotic resistance, lack of suitable vaccine or emergence of new mutations is forcing the development of novel antimicrobial agents. The objective of this study is to synthesize and characterize star-like zinc oxide nanoparticles for the application of antibacterial activities in cellulose based hygiene products. ZnO NPs were in situ synthesized via precipitation method on the surface of cellulose fibers. Since bactericidal activity of nanoparticles in part depends on the concentration in the growth medium, various amount of ZnO was incorporated into cellulose matrix ranging from 1 to 3 wt%. Microscopic (TEM, SEM) and spectroscopic (FT-IR, XRD) methods were utilized to investigate the final products. The infrared absorption spectra analysis supported by theoretical finding that during the reaction, ZnO nanoparticles could be bonded with cellulose fibers via hydrogen bonding. The yield of functionalization was determined through thermogravimetric analysis. Collected data proved the successful functionalization of the cellulose fibers with nanoparticles. Static contact angle measurements were carried out showing absorptive character of as prepared fabrics. All the samples were tested for the antibacterial properties and the results were compared to the samples prepared from the pristine cellulose fibers. Moreover, mechanical tests were performed revealing that the addition of only 2 wt% of the nanofiller boosted tensile, tearing and bursting strength by a factor of 1.6, 1.4 and 2.2 in comparison to unfunctionalized paper sample, respectively. Fabricated fabric presenting high hydrophilicity and antibacterial properties have gained increased applications in fabric industry, including hygiene product industry and hence the result of this study would be a welcomed option.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cellulose/pharmacology , Metal Nanoparticles/microbiology , Nanocomposites/microbiology , Textiles/microbiology , Zinc Oxide/pharmacology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects
2.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751335

ABSTRACT

In this study, hexagonal boron nitride nanosheets enriched with hydroxyl groups (h-BN-OH) were successfully grafted on the surface of cellulose fibers after the simple and effective exfoliation and oxidation of bulk h-BN. OH groups of h-BN-OH and the ones presented on the surface of cellulose fibers interacted via hydrogen bonding. Both spectroscopic (FT-IR, XRD) and microscopic (TEM, SEM, and atomic force microscopy (AFM)) methods results proved the successful functionalization of the cellulose fibers with the nanomaterial. Modified cellulose fibers were used to prepare paper sheets samples with different concentrations of the nanomaterial (1 wt %, 2 wt %, and 3 wt %). All the samples were tested for the antibacterial properties via the colony forming unit method and exhibited good performance against both Gram-negative (E. coli) and Gram-positive (S. epidermidis) model bacteria. Additionally, the influence of the volume of working bacterial suspension on the antibacterial efficiency of the obtained materials was examined. The results showed significantly better antibacterial performance when the volume of bacterial suspension was reduced. Mechanical properties of the paper samples with and without nanofiller were also characterized. Tensile strength, tearing strength, and bursting strength of the paper samples containing only 2 wt % of the nanofiller were improved by 60%, 61%, and 118% in comparison to the control paper samples, respectively. Furthermore, the nanofiller improved the thermal properties of the composite paper-the heat release rate decreased by up to 11.6%. Therefore, the composite paper can be further explored in a wide range of antibacterial materials, such as packaging or paper coatings.


Subject(s)
Anti-Bacterial Agents/pharmacology , Boron Compounds/pharmacology , Cellulose/pharmacology , Nanocomposites/toxicity , Anti-Bacterial Agents/chemistry , Boron Compounds/chemistry , Cellulose/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Humans , Hydrogen Bonding , Materials Testing , Microbial Sensitivity Tests , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Oxidation-Reduction , Paper , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...