Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 33(27): 3135-41, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25957666

ABSTRACT

BACKGROUND: Within a typical vaccine supply chain, vaccines are packaged into individual cylindrical vials (each containing one or more doses) that are bundled together in rectangular "inner packs" for transport via even larger groupings such as cold boxes and vaccine carriers. The variability of vaccine inner pack and vial size may hinder efficient vaccine distribution because it constrains packing of cold boxes and vaccine carriers to quantities that are often inappropriate or suboptimal in the context of country-specific vaccination guidelines. METHODS: We developed in Microsoft Excel (Microsoft Corp., Redmond, WA) a spreadsheet model that evaluated the impact of different packing schemes for the Benin routine regimen plus the introduction of the Rotarix vaccine. Specifically, we used the model to compare the current packing scheme to that of a proposed modular packing scheme. RESULTS: Conventional packing of a Dometic RCW25 that aims to maximize fully-immunized children (FICs) results in 123 FICs and a packing efficiency of 81.93% compared to a maximum of 155 FICs and 94.1% efficiency for an alternative modular packaging system. CONCLUSIONS: Our analysis suggests that modular packaging systems could offer significant advantages over conventional vaccine packaging systems with respect to space efficiency and potential FICs, when they are stored in standard vaccine carrying devices. This allows for more vaccines to be stored within the same volume while also simplifying the procedures used by field workers to pack storage devices. Ultimately, modular packaging systems could be a simple way to help increase vaccine coverage worldwide.


Subject(s)
Drug Packaging/methods , Vaccines/supply & distribution , Adolescent , Benin , Child , Child, Preschool , Humans , Infant , Infant, Newborn
2.
Vaccine ; 33 Suppl 1: A99-108, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25919184

ABSTRACT

While new mechanisms such as advance market commitments and co-financing policies of the GAVI Alliance are allowing low- and middle-income countries to gain access to vaccines faster than ever, understanding the full scope of vaccine program costs is essential to ensure adequate resource mobilization. This costing analysis examines the vaccine costs, supply chain costs, and service delivery costs of immunization programs for routine immunization and for supplemental immunization activities (SIAs) for vaccines related to 18 antigens in 94 countries across the decade, 2011-2020. Vaccine costs were calculated using GAVI price forecasts for GAVI-eligible countries, and assumptions from the PAHO Revolving Fund and UNICEF for middle-income countries not supported by the GAVI Alliance. Vaccine introductions and coverage levels were projected primarily based on GAVI's Adjusted Demand Forecast. Supply chain costs including costs of transportation, storage, and labor were estimated by developing a mechanistic model using data generated by the HERMES discrete event simulation models. Service delivery costs were abstracted from comprehensive multi-year plans for the majority of GAVI-eligible countries and regression analysis was conducted to extrapolate costs to additional countries. The analysis shows that the delivery of the full vaccination program across 94 countries would cost a total of $62 billion (95% uncertainty range: $43-$87 billion) over the decade, including $51 billion ($34-$73 billion) for routine immunization and $11 billion ($7-$17 billion) for SIAs. More than half of these costs stem from service delivery at $34 billion ($21-$51 billion)-with an additional $24 billion ($13-$41 billion) in vaccine costs and $4 billion ($3-$5 billion) in supply chain costs. The findings present the global costs to attain the goals envisioned during the Decade of Vaccines to prevent millions of deaths by 2020 through more equitable access to existing vaccines for people in all communities. By projecting the full costs of immunization programs, our findings may aid to garner greater country and donor commitments toward adequate resource mobilization and efficient allocation. As service delivery costs have increasingly become the main driver of vaccination program costs, it is essential to pay additional consideration to health systems strengthening.


Subject(s)
Immunization Programs/economics , Vaccination/economics , Vaccines/administration & dosage , Vaccines/economics , Developing Countries , Global Health , Humans , Immunization Programs/organization & administration , Infant , Infant, Newborn , Vaccines/supply & distribution
3.
Adv Parasitol ; 87: 329-417, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25765199

ABSTRACT

Economic and financing studies are particularly important for decision-making when resources are scarce or considerably limited. This is the case for neglected tropical diseases (NTDs). In fact, the definition of NTDs is an economic one. The shortage of resources for NTD control may be due in large part to the fact that the burden of NTDs and economic value of control measures have not been fully characterized. A number of economic study methodologies are available: cost of illness can quantify the extent, magnitude, and change of a problem; cost of intervention studies can outline the feasibility and guide the design of a policy or intervention; and cost-benefit, cost-effectiveness, and return-on-investment studies can determine the potential value of different interventions and policies. NTDs have unique characteristics that require special consideration in such analyses. Hence, approaches used for other diseases may need modifications to capture the full impact of NTDs. While the existing literature has made important findings, there is a need for substantially more work, as many NTDs and their associated interventions and policies require more evaluation. With increasing work in this area, NTDs may not be as 'neglected' in the future as they are now.


Subject(s)
Cost of Illness , Neglected Diseases/economics , Tropical Medicine/economics , Anthelmintics/economics , Anthelmintics/therapeutic use , Cost-Benefit Analysis , Humans , Neglected Diseases/drug therapy
4.
Pathog Glob Health ; 109(1): 4-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25578284

ABSTRACT

As the most recent outbreak of Ebola virus disease (EVD) in West Africa continues to grow since its initial recognition as a Public Health Emergency of International Concern, an unanswered question is what is the cost of a case of Ebola? Understanding this cost will help decision makers better understand the impact of each case of EVD, benchmark this against that of other diseases, prioritize which cases may require response, and begin to estimate the cost of Ebola outbreaks. To date, the scientific literature has not characterized this cost per case. Therefore, we developed a mathematical model to estimate the cost of an EVD case from the provider and societal perspectives in the three most affected countries of Guinea, Liberia, and Sierra Leone. Our model estimates the total societal cost of an EVD case with full recovery ranges from $480 to $912, while that of an EVD case not surviving ranges from $5929 to $18 929, varying by age and country. Therefore, as of 10 December 2014, the estimated total societal costs of all reported EVD cases in these three countries range from $82 to potentially over $356 million.


Subject(s)
Health Care Costs , Hemorrhagic Fever, Ebola/economics , Adolescent , Adult , Female , Guinea/epidemiology , Hemorrhagic Fever, Ebola/epidemiology , Humans , Liberia/epidemiology , Male , Middle Aged , Models, Theoretical , Sierra Leone/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...