Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 29(8): e01979, 2019 12.
Article in English | MEDLINE | ID: mdl-31332869

ABSTRACT

Higher tree density, more fuels, and a warmer, drier climate have caused an increase in the frequency, size, and severity of wildfires in western U.S. forests. There is an urgent need to restore forests across the western United States. To address this need, the U.S. Forest Service began the Four Forest Restoration Initiative (4FRI) to restore four national forests in Arizona. The objective of this study was to evaluate how restoration of ~400,000 ha under the 4FRI program and projected climate change would influence carbon dynamics and wildfire severity from 2010 to 2099. Specifically, we estimated forest carbon fluxes, carbon pools and wildfire severity under a moderate and fast 4FRI implementation schedule and compared those to status quo and no-harvest scenarios using the LANDIS-II simulation model and climate change projections. We found that the fast-4FRI scenario showed early decreases in ecosystem carbon due to initial thinning/prescribed fire treatments, but total ecosystem carbon increased by 9-18% over no harvest by the end of the simulation. This increased carbon storage by 6.3-12.7 million metric tons, depending on the climate model, equating to removal of carbon emissions from 55,000 to 110,000 passenger vehicles per year until the end of the century. Nearly half of the additional carbon was stored in more stable soil pools. However, climate models with the largest predicted temperature increases showed declines by late century in ecosystem carbon despite restoration. Our study uses data from a real-world, large-scale restoration project and indicates that restoration is likely to stabilize carbon and the benefits are greater when the pace of restoration is faster.


Subject(s)
Climate Change , Fires , Arizona , Carbon , Ecosystem , Southwestern United States , Trees
2.
PLoS One ; 9(10): e111092, 2014.
Article in English | MEDLINE | ID: mdl-25337823

ABSTRACT

The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.


Subject(s)
Forests , Pinus ponderosa , Arizona , Conservation of Natural Resources , Dehydration , Droughts , Forestry , Groundwater , Models, Statistical
3.
Conserv Biol ; 27(1): 4-13, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23110636

ABSTRACT

Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants' self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world.


Subject(s)
Climate Change , Conservation of Natural Resources , Models, Theoretical , Education , Southwestern United States
4.
Evolution ; 44(7): 1764-1779, 1990 Nov.
Article in English | MEDLINE | ID: mdl-28567801

ABSTRACT

We examined opposing selective forces on female body size in the sexually dimorphic red-winged blackbird: social competition favoring larger females, and energetic advantages favoring smaller females. Downhower proposed that selection might drive female birds to be smaller than the optimum for survival, if smaller females were able to exceed their energetic requirements for self-maintenance earlier in the season and therefore breed earlier. Since in most birds the earliest breeders fledge the most young, this could favor the evolution of smaller female size, and therefore contribute to the magnitude of sexual size dimorphism in these birds. We tested this hypothesis in 1987 and 1988 by comparing the size and breeding date of female red-winged blackbirds. Consistent with our preditions, early-nesting females had much higher nesting success, but contrary to prediction, larger females bred earlier. We then examined the effects of female size on competition. If large females have an advantage in social competition, and if competition influences breeding date and reproductive success, then larger females might breed earlier. Primary females, the first females to arrive and nest on a territory, were more aggressive than lower ranked females; more aggressive females settled on better territories and laid earlier than less aggressive females; and larger females were more aggressive. Social competition between females may therefore favor large females. Finally, we tested the prediction that selection favoring large females might be limited by energetic constraints on large females. We found that large females had less fat than small females during breeding, and that the levels of fat that females of a given size carried affected breeding date and egg size. Therefore, social competition may favor large females, but reproductive energetics favoring smaller females may constrain selection for large female body size.

5.
Evolution ; 43(4): 870-881, 1989 Jul.
Article in English | MEDLINE | ID: mdl-28564205

ABSTRACT

I examined the adaptive significance of two floral traits in the perennial herb, Lupinus argenteus: 1) the retention of corollas on "spent" flowers, i.e., flowers containing inviable pollen, unreceptive stigmas, and negligible pollinator rewards and 2) a change in corolla color of retained "spent" flowers, which is restricted to a spot on the banner petal. At anthesis, this spot is yellow, and approximately four days later, it changes to purple. After the change, purple flowers remain on plants an additional 5-7 days before corolla abscission occurs; purple flowers were avoided by pollinators, presumably because they contained less pollen (rewards) than yellow ones. I experimentally tested the hypothesis that purple flowers contribute to the floral display of the plant by removing varying numbers of spent flowers and assessing the effect on pollination visitation. Pollinators preferentially approached and foraged on plants with greater numbers of flowers per inflorescence; they did not discriminate between yellow (rewarding) and purple (nonrewarding) flowers at interplant distances greater than 0.4 meters but would preferentially forage on plants with more total flowers, even if these individuals contained fewer rewarding flowers. Thus, spent flowers increased the overall attractiveness of plants to pollinators. In theory, color change may benefit plants in two ways. First, by directing pollinators to rewarding flowers, the change may increase pollinator foraging efficiency, with the result that pollinators visit more flowers before leaving plants (pollinator-tenure mechanism). Second, by directing pollinators to receptive flowers, the color change may prevent incoming pollen from being wasted on unreceptive stigmas and may prevent collection of inviable pollen (pollination-efficiency mechanism). I tested the pollinator-tenure mechanism experimentally by removing pollen from yellow flowers, thereby reducing the reliability of the color-reward signal. Pollinators visited fewer total flowers on experimental plants than on controls, resulting in reduced seed production in one year.

SELECTION OF CITATIONS
SEARCH DETAIL
...