Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 116941, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889640

ABSTRACT

The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.

2.
Bioorg Chem ; 115: 105213, 2021 10.
Article in English | MEDLINE | ID: mdl-34364050

ABSTRACT

Cathepsins K and S are closely related papain-like cysteine peptidases and potential therapeutic targets for metabolic and inflammatory diseases such as osteoporosis and arthritis. Here we describe the reduction of a previously characterized succinimide (2,5-dioxopyrrolidine)-containing hyperbolic inhibitor of cathepsin K (methyl (RS)-N-[1-(4-methoxyphenyl)-2,5-dioxopyrrolidin-3-yl]glycinate), to obtain a better and more selective compound (compound 4a - methyl (2,5-dioxopyrrolidin-3-yl)glycinate), which acted as a hyperbolic mixed inhibitor/activator similar to already known allosteric effectors of cathepsin K. We then investigated the potential of the succinimide scaffold as inhibitors of cathepsins K and/or S and synthesized a library of such compounds by 1,4-addition of α-amino acid esters and related compounds to N-substituted maleimides. From the generated library, we identified the first small molecule hyperbolic inhibitors of cathepsin S (methyl ((R)-2,5-dioxopyrrolidin-3-yl)-l-threoninate (compound R-4c) and 3-{[(1S,2R,3'S)-2-hydroxycyclohexyl]amino}pyrrolidine-2,5-dione (compound (1S,2R,3'S-10)). The former acted via a similar mechanism to compound 4a, while the latter was a hyperbolic specific inhibitor of cathepsin S. Given the versatility of the scaffold, the identified compounds will be used as the basis for the development of high-affinity hyperbolic inhibitors of the individual peptidases and to explore the potential of hyperbolic inhibitors for the inhibition of cysteine cathepsins in in vitro models.


Subject(s)
Cathepsin K/antagonists & inhibitors , Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Succinimides/pharmacology , Cathepsin K/metabolism , Cathepsins/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Kinetics , Molecular Structure , Structure-Activity Relationship , Succinimides/chemical synthesis , Succinimides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...