Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640242

ABSTRACT

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Subject(s)
Agaricus , Carbon , Lignin , Lignin/metabolism , Carbon/metabolism , Mycelium/metabolism , Carbohydrates , Amino Acids
2.
Front Microbiol ; 10: 1293, 2019.
Article in English | MEDLINE | ID: mdl-31281293

ABSTRACT

Chitin provides a valuable carbon and nitrogen source for soil microorganisms and is a major component of particulate organic matter in agricultural soils. To date, there is no information on interaction and interdependence in chitin-degrading soil microbiomes. Since microbial chitin degradation occurs under both oxic and anoxic conditions and both conditions occur simultaneously in soil, the comparison of the active microbiome members under both conditions can reveal key players for the overall degradation in aerated soil. A time-resolved 16S rRNA stable isotope probing experiment was conducted with soil material from the top soil layer of a wheat-covered field. [13CU]-chitin was largely mineralized within 20 days under oxic conditions. Cellvibrio, Massilia, and several Bacteroidetes families were identified as initially active chitin degraders. Subsequently, Planctomycetes and Verrucomicrobia were labeled by assimilation of 13C carbon either from [13CU]-chitin or from 13C-enriched components of primary chitin degraders. Bacterial predators (e.g., Bdellovibrio and Bacteriovorax) were labeled, too, and non-labeled microeukaryotic predators (Alveolata) increased their relative abundance toward the end of the experiment (70 days), indicating that chitin degraders were subject to predation. Trophic interactions differed substantially under anoxic and oxic conditions. Various fermentation types occurred along with iron respiration. While Acidobacteria and Chloroflexi were the first taxa to be labeled, although at a low 13C level, Firmicutes and uncultured Bacteroidetes were predominantly labeled at a much higher 13C level during the later stages, suggesting that the latter two bacterial taxa were mainly responsible for the degradation of chitin and also provided substrates for iron reducers. Eventually, our study revealed that (1) hitherto unrecognized Bacteria were involved in a chitin-degrading microbial food web of an agricultural soil, (2) trophic interactions were substantially shaped by the oxygen availability, and (3) detectable predation was restricted to oxic conditions. The gained insights into trophic interactions foster our understanding of microbial chitin degradation, which is in turn crucial for an understanding of soil carbon dynamics.

3.
J Agric Food Chem ; 65(32): 6779-6788, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28727919

ABSTRACT

A relatively recent technique termed comprehensive multiphase (CMP) NMR spectroscopy was used to investigate the growth and associated metabolomic changes of 13C-labeled wheat seeds and germinated seedlings. CMP-NMR enables the study of all phases in intact samples (i.e., liquid, gel-like, semisolid, and solid), by combining all required electronics into a single NMR probe, and can be used for investigating biological processes such as seed germination. All components, from the most liquid-like (i.e., dissolved metabolites) to the most rigid or solid-like (seed coat) were monitored in situ over 4 days. A wide range of metabolites were identified, and after 96 h of germination, the number of metabolites in the mobile phase more than doubled in comparison to 0 h (dry seed). This work represents the first application of CMP-NMR to follow biological processes in plants.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Seeds/growth & development , Triticum/chemistry , Germination , Seedlings/chemistry , Seedlings/growth & development , Seeds/chemistry , Triticum/growth & development
4.
J Agric Food Chem ; 62(1): 107-15, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24354469

ABSTRACT

Seeds are complex entities composed of liquids, gels, and solids. NMR spectroscopy is a powerful tool for studying molecular structure but has evolved into two fields, solution and solid state. Comprehensive multiphase (CMP) NMR spectroscopy is capable of liquid-, gel-, and solid-state experiments for studying intact samples where all organic components are studied and differentiated in situ. Herein, intact (13)C-labeled seeds were studied by a variety of 1D/2D (1)H/(13)C experiments. In the mobile phase, an assortment of metabolites in a single (13)C-labeled wheat seed were identified; the gel phase was dominated by triacylglycerides; the semisolid phase was composed largely of carbohydrate biopolymers, and the solid phase was greatly influenced by starchy endosperm signals. Subsequently, the seeds were compared and relative similarities and differences between seed types discussed. This study represents the first application of CMP-NMR to food chemistry and demonstrates its general utility and feasibility for studying intact heterogeneous samples.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Seeds/chemistry , Brassica/chemistry , Carbon Isotopes , Glycerides/chemistry , Isotope Labeling , Magnetic Resonance Spectroscopy/instrumentation , Triticum/chemistry , Zea mays/chemistry
5.
New Phytol ; 175(1): 29-35, 2007.
Article in English | MEDLINE | ID: mdl-17547664

ABSTRACT

* The results of a single publication stating that terrestrial plants emit methane has sparked a discussion in several scientific journals, but an independent test has not yet been performed. * Here it is shown, with the use of the stable isotope (13)C and a laser-based measuring technique, that there is no evidence for substantial aerobic methane emission by terrestrial plants, maximally 0.3% (0.4 ng g(-1) h(-1)) of the previously published values. * Data presented here indicate that the contribution of terrestrial plants to global methane emission is very small at best. * Therefore, a revision of carbon sequestration accounting practices based on the earlier reported contribution of methane from terrestrial vegetation is redundant.


Subject(s)
Carbon Isotopes/metabolism , Methane/metabolism , Plants/metabolism , Aerobiosis , Greenhouse Effect , Isotope Labeling , Kinetics , Lasers , Species Specificity
6.
New Phytol ; 167(3): 859-68, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16101922

ABSTRACT

The aim here was to separately assess mycorrhizal fungal and plant responses under elevated atmospheric CO2, and to test a mycocentric model that assumes that increased carbon availability to the fungus will not automatically feed back to enhanced plant growth performance. Meta-analyses were applied across independent studies. Responses were compared in ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi, and ECM and AM plants. Responses of both mycorrhizal fungi and mycorrhizal plants to elevated CO2 were significantly positive. The response ratio for ECM fungi was 1.34 (an increase of 34%) and for AM fungi 1.21 (21%), indicating a significantly different response. The response ratio for ECM plants was 1.26, similar to that of AM plants (1.25). Fractional colonization proved to be an unsuitable fungal parameter. Evidence was found for the mycocentric view in ECM, but not in AM systems. Fungal identity and plant identity were important parameters that affected response ratios. The need for better descriptors of fungal and plant responses is emphasized.


Subject(s)
Carbon Dioxide/metabolism , Mycorrhizae/metabolism , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...