Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Environ Microbiol Rep ; 16(3): e13262, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725141

ABSTRACT

Common carp (Cyprinus carpio) were fed food with different protein concentrations following different feeding regimes, which were previously shown to affect growth, nitrogen excretion and amino acid catabolism. 16S rRNA gene amplicon sequencing was performed to investigate the gut microbiota of these fish. Lower dietary protein content increased microbial richness, while the combination of demand feeding and dietary protein content affected the composition of the gut microbiota. Hepatic glutamate dehydrogenase (GDH) activity was correlated to the composition of the gut microbiota in all dietary treatments. We found that demand-fed carp fed a diet containing 39% protein had a significantly higher abundance of Beijerinckiaceae compared to other dietary groups. Network analysis identified this family and two Rhizobiales families as hubs in the microbial association network. In demand-fed carp, the microbial association network had significantly fewer connections than in batch-fed carp. In contrast to the large effects of the feeding regime and protein content of the food on growth and nitrogen metabolism, it had only limited effects on gut microbiota composition. However, correlations between gut microbiota composition and liver GDH activity showed that host physiology and gut microbiota are connected, which warrants functional studies into the role of the gut microbiota in fish physiology.


Subject(s)
Animal Feed , Bacteria , Carps , Dietary Proteins , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Carps/microbiology , Carps/growth & development , Animal Feed/analysis , RNA, Ribosomal, 16S/genetics , Dietary Proteins/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Glutamate Dehydrogenase/metabolism , Glutamate Dehydrogenase/genetics , Nitrogen/metabolism , Liver/metabolism , Phylogeny , Diet/veterinary
2.
Sci Total Environ ; 896: 165212, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37391154

ABSTRACT

Recirculating aquaculture systems (RAS) are increasingly being used to grow fish, as intensive water reuse reduces water consumption and environmental impact. RAS use biofilters containing nitrogen-cycling microorganisms that remove ammonia from the aquaculture water. Knowledge of how RAS microbial communities relate to the fish-associated microbiome is limited, as is knowledge of fish-associated microbiota in general. Recently, nitrogen-cycling bacteria have been discovered in zebrafish and carp gills and shown to detoxify ammonia in a manner similar to the RAS biofilter. Here, we compared RAS water and biofilter microbiomes with fish-associated gut and gill microbial communities in laboratory RAS housing either zebrafish (Danio rerio) or common carp (Cyprinus carpio) using 16S rRNA gene amplicon sequencing. The phylogeny of ammonia-oxidizing bacteria in the gills and the RAS environment was investigated in more detail by phylogenetic analysis of the ammonia monooxygenase subunit A (amoA). The location from which the microbiome was sampled (RAS compartments and gills or gut) had a stronger effect on community composition than the fish species, but species-specific differences were also observed. We found that carp- and zebrafish-associated microbiomes were highly distinct from their respective RAS microbiomes, characterized by lower overall diversity and a small core microbiome consisting of taxa specifically adapted to the respective organ. The gill microbiome was also defined by a high proportion of unique taxa. Finally, we found that amoA sequences from the gills were distinct from those from the RAS biofilter and water. Our results showed that the gut and gill microbiomes of carp and zebrafish share a common and species-specific core microbiome that is distinct from the microbially-rich RAS environment.


Subject(s)
Carps , Gastrointestinal Microbiome , Microbiota , Animals , Gastrointestinal Microbiome/genetics , Zebrafish/genetics , Gills , Phylogeny , RNA, Ribosomal, 16S/genetics , Ammonia , Aquaculture , Water , Nitrogen
3.
Front Physiol ; 14: 1111404, 2023.
Article in English | MEDLINE | ID: mdl-36824463

ABSTRACT

Ammonia accumulation is a major challenge in intensive aquaculture, where fish are fed protein-rich diets in large rations, resulting in increased ammonia production when amino acids are metabolized as energy source. Ammonia is primarily excreted via the gills, which have been found to harbor nitrogen-cycle bacteria that convert ammonia into dinitrogen gas (N2) and therefore present a potential in situ detoxifying mechanism. Here, we determined the impact of feeding strategies (demand-feeding and batch-feeding) with two dietary protein levels on growth, nitrogen excretion, and nitrogen metabolism in common carp (Cyprinus carpio, L.) in a 3-week feeding experiment. Demand-fed fish exhibited significantly higher growth rates, though with lower feed efficiency. When corrected for feed intake, nitrogen excretion was not impacted by feeding strategy or dietary protein, but demand-fed fish had significantly more nitrogen unaccounted for in the nitrogen balance and less retained nitrogen. N2 production of individual fish was measured in all experimental groups, and production rates were in the same order of magnitude as the amount of nitrogen unaccounted for, thus potentially explaining the missing nitrogen in the balance. N2 production by carp was also observed when groups of fish were kept in metabolic chambers. Demand feeding furthermore caused a significant increase in hepatic glutamate dehydrogenase activities, indicating elevated ammonia production. However, branchial ammonia transporter expression levels in these animals were stable or decreased. Together, our results suggest that feeding strategy impacts fish growth and nitrogen metabolism, and that conversion of ammonia to N2 by nitrogen cycle bacteria in the gills may explain the unaccounted nitrogen in the balance.

4.
BMC Genomics ; 22(1): 824, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34781893

ABSTRACT

BACKGROUND: Rainbow trout (Oncorhynchus mykiss) is a salmonid species with a complex life-history. Wild populations are naturally divided into freshwater residents and sea-run migrants. Migrants undergo an energy-demanding adaptation for life in seawater, known as smoltification, while freshwater residents display these changes in an attenuated magnitude and rate. Despite this, in seawater rainbow trout farming all fish are transferred to seawater. Under these circumstances, weeks after seawater transfer, a significant portion of the fish die (around 10%) or experience growth stunting (GS; around 10%), which represents an important profitability and welfare issue. The underlying causes leading to GS in seawater-transferred rainbow trout remain unknown. In this study, we aimed at characterising the GS phenotype in seawater-transferred rainbow trout using untargeted and targeted approaches. To this end, the liver proteome (LC-MS/MS) and lipidome (LC-MS) of GS and fast-growing phenotypes were profiled to identify molecules and processes that are characteristic of the GS phenotype. Moreover, the transcription, abundance or activity of key proteins and hormones related to osmoregulation (Gill Na+, K + -ATPase activity), growth (plasma IGF-I, and liver igf1, igfbp1b, ghr1 and ctsl) and stress (plasma cortisol) were measured using targeted approaches. RESULTS: No differences in Gill Na+, K + -ATPase activity and plasma cortisol were detected between the two groups. However, a significant downregulation in plasma IGF-I and liver igf1 transcription pointed at this growth factor as an important pathomechanism for GS. Changes in the liver proteome revealed reactive-oxygen-species-mediated endoplasmic reticulum stress as a key mechanism underlying the GS phenotype. From the lipidomic analysis, key observations include a reduction in triacylglycerols and elevated amounts of cardiolipins, a characteristic lipid class associated with oxidative stress, in GS phenotype. CONCLUSION: While the triggers to the activation of endoplasmic reticulum stress are still unknown, data from this study point towards a nutritional deficiency as an underlying driver of this phenotype.


Subject(s)
Oncorhynchus mykiss , Animals , Chromatography, Liquid , Endoplasmic Reticulum Stress , Growth Disorders , Oncorhynchus mykiss/genetics , Seawater , Tandem Mass Spectrometry
5.
Cancers (Basel) ; 13(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34680273

ABSTRACT

Patients with mutations in the ß-subunit of the succinate dehydrogenase (SDHB) have the highest risk to develop incurable malignant phaeochromocytomas and paragangliomas (PPGLs). Therapy development is hindered by limited possibilities to test new therapeutic strategies in vivo. One possible molecular mechanism of SDHB-associated tumorigenesis originates in an overproduction of reactive oxygen species (ROS) due to mitochondrial dysfunction. Ascorbic acid (Vitamin C) has already been shown to act as anti-cancer agent in several clinical trials for various types of cancer. In this study, the potential of the sdhbrmc200 zebrafish model to study SDHB-associated PPGLs using a drug screening approach was investigated. First, we identified increased basal ROS levels in homozygous sdhb larvae compared to heterozygous and wild-type siblings. Using a semi high-throughput drug screening, the effectiveness of different dosages of anti- and pro-oxidant Vitamin C were assessed to evaluate differences in survival, ROS levels, and locomotor activity. Low-dosage levels of Vitamin C induced a decrease of ROS levels but no significant effects on lifespan. In contrast, high-dosage levels of Vitamin C shortened the lifespan of the homozygous sdhbrmc200 larvae while not affecting the lifespan of heterozygous and wild-type siblings. These results validated the sdhbrmc200 zebrafish model as a powerful drug screening tool that may be used to identify novel therapeutic targets for SDHB-associated PPGLs.

6.
Int J Mol Sci ; 22(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540792

ABSTRACT

The skin barrier consists of mucus, primarily comprising highly glycosylated mucins, and the epithelium. Host mucin glycosylation governs interactions with pathogens and stress is associated with impaired epithelial barrier function. We characterized Atlantic salmon skin barrier function during chronic stress (high density) and mucin O-glycosylation changes in response to acute and chronic stress. Fish held at low (LD: 14-30 kg/m3) and high densities (HD: 50-80 kg/m3) were subjected to acute stress 24 h before sampling at 17 and 21 weeks after start of the experiment. Blood parameters indicated primary and secondary stress responses at both sampling points. At the second sampling, skin barrier function towards molecules was reduced in the HD compared to the LD group (Papp mannitol; p < 0.01). Liquid chromatography-mass spectrometry revealed 81 O-glycan structures from the skin. Fish subjected to both chronic and acute stress had an increased proportion of large O-glycan structures. Overall, four of the O-glycan changes have potential as indicators of stress, especially for the combined chronic and acute stress. Stress thus impairs skin barrier function and induces glycosylation changes, which have potential to both affect interactions with pathogens and serve as stress indicators.


Subject(s)
Crowding , Mucins/metabolism , Mucus/chemistry , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Salmo salar/metabolism , Skin Absorption/physiology , Skin/metabolism , Stress, Physiological/physiology , Stress, Psychological/metabolism , Animals , Biomarkers , Chromatography, Liquid , Crowding/psychology , Glycosylation , Hydrocortisone/blood , Mannitol/pharmacokinetics , Mass Spectrometry , Mucins/isolation & purification , Mucus/metabolism , N-Acetylneuraminic Acid/isolation & purification , Oxygen/analysis , Polysaccharides/isolation & purification , Protein Processing, Post-Translational , Salmo salar/blood , Skin/ultrastructure , Temperature , Water Quality
7.
Endocr Relat Cancer ; 28(1): 65-77, 2021 01.
Article in English | MEDLINE | ID: mdl-33156815

ABSTRACT

Pheochromocytomas and paragangliomas (PPGLs) caused by mutations in the B-subunit of the succinate dehydrogenase (SDHB) have the highest metastatic rate among PPGLs, and effective systemic therapy is lacking. To unravel underlying pathogenic mechanisms, and to evaluate therapeutic strategies, suitable in vivo models are needed. The available systemic Sdhb knock-out mice cannot model the human PPGL phenotype: heterozygous Sdhb mice lack a disease phenotype, and homozygous Sdhb mice are embryonically lethal. Using CRISPR/cas9 technology, we introduced a protein-truncating germline lesion into the zebrafish sdhb gene. Heterozygous sdhb mutants were viable and displayed no obvious morphological or developmental defects. Homozygous sdhb larvae were viable, but exhibited a decreased lifespan. Morphological analysis revealed incompletely or non-inflated swim bladders in homozygous sdhb mutants at day 6. Although no differences in number and ultrastructure of the mitochondria were observed. Clear defects in energy metabolism and swimming behavior were observed in homozygous sdhb mutant larvae. Functional and metabolomic analyses revealed decreased mitochondrial complex 2 activity and significant succinate accumulation in the homozygous sdhb mutant larvae, mimicking the metabolic effects observed in SDHB-associated PPGLs. This is the first study to present a vertebrate animal model that mimics metabolic effects of SDHB-associated PPGLs. This model will be useful in unraveling pathomechanisms behind SDHB-associated PPGLs. We can now study the metabolic effects of sdhb disruption during different developmental stages and develop screening assays to identify novel therapeutic targets in vivo. Besides oncological syndromes, our model might also be useful for pediatric mitochondrial disease caused by loss of the SDHB gene.


Subject(s)
Larva/metabolism , Paraganglioma/genetics , Succinate Dehydrogenase/metabolism , Animals , Humans , Zebrafish
8.
J Exp Biol ; 222(Pt 23)2019 12 04.
Article in English | MEDLINE | ID: mdl-31712354

ABSTRACT

Fish reared for stocking programmes are severely stimulus deprived compared with their wild conspecifics raised under natural conditions. This leads to reduced behavioural plasticity and low post-release survival of stocked fish. Environmental enrichment can have positive effects on important life skills, such as predator avoidance and foraging behaviour, but the neural mechanisms underpinning these behavioural changes are still largely unknown. In this study, juvenile Atlantic salmon (Salmo salar) were reared in an enriched hatchery environment for 7 weeks, after which neurobiological characteristics and post-release survival were compared with those of fish reared under normal hatchery conditions. Using in situ hybridization and qPCR, we quantified the expression of brain-derived neurotrophic factor (bdnf) and the neural activity marker cfos in telencephalic subregions associated with relational memory, emotional learning and stress reactivity. Aside from lower expression of bdnf in the Dlv (a region associated with relational memory) of enriched salmon, we observed no other significant effects of enrichment in the studied regions. Exposure to an enriched environment increased post-release survival during a 5 month residence in a natural river by 51%. Thus, we demonstrate that environmental enrichment can improve stocking success of Atlantic salmon parr and that environmental enrichment is associated with changes in bdnf expression in the fish's hippocampus-equivalent structure.


Subject(s)
Aquaculture , Longevity , Neuronal Plasticity , Prosencephalon/physiology , Salmo salar/physiology , Animals , Female , Fisheries , Male , Seasons
9.
R Soc Open Sci ; 6(3): 181859, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31032038

ABSTRACT

Individuals in a fish population differ in key life-history traits such as growth rate and body size. This raises the question of whether such traits cluster along a fast-slow growth continuum according to a pace-of-life syndrome (POLS). Fish species like salmonids may develop a bimodal size distribution, providing an opportunity to study the relationships between individual growth and behavioural responsiveness. Here we test whether proactive characteristics (bold behaviour coupled with low post-stress cortisol production) are related to fast growth and developmental rate in Atlantic salmon, Salmo salar. Boldness was tested in a highly controlled two-tank hypoxia test were oxygen levels were gradually decreased in one of the tanks. All fish became inactive close to the bottom at 70% oxygen saturation. At 40% oxygen saturation level a fraction of the fish actively sought to avoid hypoxia. A proactive stress coping style was verified by lower cortisol response to a standardized stressor. Two distinct clusters of bimodal growth trajectories were identified, with fast growth and early smoltification in 80% of the total population. There was a higher frequency of proactive than reactive individuals in this fast-developing fraction of fish. The smolts were associated with higher post-stress plasma cortisol than parr, and the proactive smolts leaving hypoxia had significant lower post-stress cortisol than the stayers. The study demonstrated a link between a proactive coping and fast growth and developmental ratio and suggests that selection for domestic production traits promotes this trait cluster.

10.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 260-271, 2019 04.
Article in English | MEDLINE | ID: mdl-30724799

ABSTRACT

Maternal stress and early life stress affect development. Zebrafish (Danio rerio) are ideally suited to study this, as embryos develop externally into free-feeding larvae. The objective of this study was therefore to assess the effects of increased levels of cortisol, mimicking thereby maternal stress, on larval physiology and behaviour. We studied the effects in two common zebrafish strains, that is, AB and Tupfel long-fin (TL), to assess strain dependency of effects. Fertilized eggs were exposed to a cortisol-containing medium (1.1 µmol/l) or control medium from 0 to 6 h following fertilization, after which at 5-day following fertilization, larval behaviour and baseline hypothalamus-pituitary-interrenal cells axis functioning were measured. The data confirmed earlier observed differences between AB larvae and TL larvae: a lower hypothalamus-pituitary-interrenal axis activity in TL larvae than AB larvae, and slower habituation to repeated acoustic/vibrational stimuli in TL larvae than AB larvae. Following cortisol treatment, increased baseline levels of cortisol were found in AB larvae but not TL larvae. At the behavioural level, increased thigmotaxis or 'wall hugging' was found in AB larvae, but decreased thigmotaxis in TL larvae; however, both AB larvae and TL larvae showed decreased habituation to repeated acoustic/vibrational stimuli. The data emphasize that strain is a critical factor in zebrafish research. The habituation data suggest a robust effect of cortisol exposure, which is likely an adaptive response to increase the likelihood of detecting or responding to potentially threatening stimuli. This may enhance early life survival. Along with other studies, our study underlines the notion that zebrafish may be a powerful model animal to study the effects of maternal and early life stress on life history.


Subject(s)
Behavior, Animal/drug effects , Hydrocortisone/pharmacology , Stress, Physiological/drug effects , Animals , Female , Hydrocortisone/metabolism , Larva/drug effects , Pregnancy , Stress, Physiological/physiology , Stress, Psychological/physiopathology , Zebrafish/physiology
11.
Front Behav Neurosci ; 12: 210, 2018.
Article in English | MEDLINE | ID: mdl-30254575

ABSTRACT

Life experiences in the rearing environment shape the neural and behavioral plasticity of animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived and does not optimally prepare fish for release into the wild. While the behavioral differences between wild and hatchery-reared fish have been examined to some extent, few studies have compared neurobiological characteristics between wild and hatchery-reared individuals. Here, we compare the expression of immediate early gene cfos and neuroplasticity marker brain-derived neurotrophic factor (bdnf) in telencephalic subregions associated with processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post (acute) stress conditions. Using in situ hybridization, we found that the expression level of these markers is highly specific per neuronal region and affected by both the origin of the fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain regions and cfos was more highly expressed in the Dlv (functional equivalent to the mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings demonstrate that the hatchery environment affects neuroplasticity and neural activation in brain regions that are important for learning processes and stress reactivity, providing a neuronal foundation for the behavioral differences observed between wild and hatchery-reared fish.

12.
Article in English | MEDLINE | ID: mdl-30158900

ABSTRACT

The present study aimed to compare effects of increasing chronic stress load on the stress response of European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) to identify neuroendocrine functions that regulate this response. Fish were left undisturbed (controls) or exposed to three levels of chronic stress for 3 weeks and then subjected to an acute stress test (ACT). Chronic stress impeded growth and decreased feed consumption in seabass, not in seabream. In seabass basal cortisol levels are high and increase with stress load; the response to a subsequent ACT decreases with increasing (earlier) load. Basal cortisol levels in seabream increase with the stress load, whereas the ACT induced a similar response in all groups. In seabass and seabream plasma α-MSH levels and brain stem serotonergic activity and turnover were similar and not affected by chronic stress. Species-specific molecular neuro-regional differences were seen. In-situ hybridization analysis of the early immediate gene cfos in the preoptic area showed ACT-activation in seabream; in seabass the expression level was not affected by ACT and seems constitutively high. In seabream, expression levels of telencephalic crf, crfbp, gr1, and mr were downregulated; the seabass hypothalamic preoptic area showed increased expression of crf and gr1, and decreased expression of mr, and this increased the gr1/mr ratio considerably. We substantiate species-specific physiological differences to stress coping between seabream and seabass at an endocrine and neuroendocrine molecular level. Seabass appear less resilient to stress, which we conclude from high basal activities of stress-related parameters and poor, or absent, responses to ACT. This comparative study reveals important aquaculture, husbandry, and welfare implications for the rearing of these species.

13.
Biol Open ; 6(11): 1692-1697, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28982701

ABSTRACT

Many strains of zebrafish (Danio rerio) are readily available. Earlier we observed differences between AB and Tupfel long-fin (TL) larvae regarding baseline hypothalamus-pituitary-interrenal (HPI) axis activity and (neuro)development. Light regimes, i.e. 14 h light:10 h dark and 24 h continuous dark or light, affect hatching rate and larval growth. Here, we assessed baseline transcript abundance of HPI-axis-related genes and (neuro)development-related genes of AB and TL larvae (5 days post fertilisation) using these light regimes. A principal component analysis revealed that in AB larvae the baseline expression of HPI-axis-related genes was higher the more hours of light, while the expression of (neuro)development-related genes was higher under 14 h light:10 h dark than under both continuous light or dark. In TL larvae, a complex pattern emerged regarding baseline expression of HPI-axis-related and (neuro)development-related genes. These data extend data of earlier studies by showing that light regimes affect gene-expression in larvae, and more importantly so, strengthen the notion of differences between larvae of the AB and TL strain. The latter finding adds to the growing database of phenotypical differences between zebrafish of the AB and TL strain.

14.
PLoS One ; 12(4): e0175420, 2017.
Article in English | MEDLINE | ID: mdl-28419104

ABSTRACT

Zebrafish (Danio rerio) have become popular as model organism in research. Many strains are readily available, which not only differ morphologically, but also genetically, physiologically and behaviourally. Here, we focus on the AB and Tupfel long-fin (TL) strain for which we have previously shown that adults differ in baseline hypothalamus-pituitary-interrenal (HPI)-axis activity (AB higher than TL) affecting inhibitory avoidance behaviour (absent in AB). To assess whether strain differences are already present in early life stages, we compared baseline HPI-axis related gene expression as well as cortisol levels, (neuro)development related as well as (innate) immune system related gene expression, and light-dark as well as startle behaviour in larvae 5 days post fertilisation. The data show that AB and TL larvae differ in baseline HPI-axis activity (AB higher than TL), expression of (neuro)development and immune system related genes (AB higher than TL), habituation to acoustic/vibrational stimuli (AB habituate faster than TL) and light-dark induced changes in motor behaviour (AB stronger than TL). Our data show that already in larval stages differences exist between zebrafish of the AB and TL strain confirming and extending data of earlier studies. To what extent the mutation in connexin 41.8, leading to spots rather than stripes in TL, but also (possibly) affecting eye, heart and brain function, is involved in the expression of (some of) these differences needs to be studied. These results emphasise that differences between strains need to be taken into account to enhance reproducibility both within, and between, laboratories.


Subject(s)
Gene Expression , Hydrocortisone/metabolism , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Female , Larva/genetics , Larva/physiology , Male , Reflex, Startle/physiology , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Zebrafish/classification , Zebrafish/physiology
15.
Article in English | MEDLINE | ID: mdl-28303116

ABSTRACT

Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent developments in the field of (neuro)endocrine regulation of energy balance in teleosts, with a focus on leptin.

16.
J Exp Biol ; 220(Pt 8): 1524-1532, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28167808

ABSTRACT

Despite the use of fish models to study human mental disorders and dysfunctions, knowledge of regional telencephalic responses in non-mammalian vertebrates expressing alternative stress coping styles is poor. As perception of salient stimuli associated with stress coping in mammals is mainly under forebrain limbic control, we tested region-specific forebrain neural (i.e. mRNA abundance and monoamine neurochemistry) and endocrine responses under basal and acute stress conditions for previously characterised proactive and reactive Atlantic salmon. Reactive fish showed a higher degree of the neurogenesis marker proliferating cell nuclear antigen (pcna) and dopamine activity under basal conditions in the proposed hippocampus homologue (Dl) and higher post-stress plasma cortisol levels. Proactive fish displayed higher post-stress serotonergic signalling (i.e. higher serotonergic activity and expression of the 5-HT1A receptor) in the proposed amygdala homologue (Dm), increased expression of the neuroplasticity marker brain-derived neurotropic factor (bdnf) in both Dl and the lateral septum homologue (Vv), as well as increased expression of the corticotropin releasing factor 1 (crf1 ) receptor in the Dl, in line with active coping neuro-profiles reported in the mammalian literature. We present novel evidence of proposed functional equivalences in the fish forebrain with mammalian limbic structures.


Subject(s)
Prosencephalon/physiology , Salmo salar/physiology , Stress, Physiological , Animal Migration , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hydrocortisone/blood , Neurogenesis , Neuronal Plasticity , Oxygen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/genetics , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Salmo salar/blood , Transcription, Genetic
17.
R Soc Open Sci ; 3(5): 160030, 2016 May.
Article in English | MEDLINE | ID: mdl-27293782

ABSTRACT

Signalling systems activated under stress are highly conserved, suggesting adaptive effects of their function. Pathologies arising from continued activation of such systems may represent a mismatch between evolutionary programming and current environments. Here, we use Atlantic salmon (Salmo salar) in aquaculture as a model to explore this stance of evolutionary-based medicine, for which empirical evidence has been lacking. Growth-stunted (GS) farmed fish were characterized by elevated brain serotonergic activation, increased cortisol production and behavioural inhibition. We make the novel observation that the serotonergic system in GS fish is unresponsive to additional stressors, yet a cortisol response is maintained. The inability of the serotonergic system to respond to additional stress, while a cortisol response is present, probably leads to both imbalance in energy metabolism and attenuated neural plasticity. Hence, we propose that serotonin-mediated behavioural inhibition may have evolved in vertebrates to minimize stress exposure in vulnerable individuals.

18.
Physiol Behav ; 153: 1-6, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26440316

ABSTRACT

The possibility to prepare for and respond to challenges in a proper manner is essential to cope with a changing environment, and learning allows fish to up or downregulate the stress response based on experience. The regulation of the response to predicted needs should be easier in more predictable environments. We exposed salmon parr to chasing of either 15 s (weak stressor) or 5 min (strong stressor) twice daily for a 7-day learning period, with chasing either announced by a 30 s light signal (conditioned) or not announced (unconditioned). The behavioural response to the light signal was different between the conditioned and unconditioned groups, demonstrating that conditioned groups associated the signal with chasing. We could, however, not demonstrate any effect on the stress response of anticipation. The fish habituated to repeated stress exposures with a similar decrease in oxygen hyperconsumption in all groups. Due to habituation, possible effects of predictable announcement of a stressor on the physiological stress response may not have been expressed in this study. Plasma cortisol concentrations 1h after light signal and chasing the day after the training period was moderate in all groups although higher after 5 min chasing (13 ng ml(-1)) than 15 s chasing (7 ng ml(-1)). There was no physiological stress response after exposure to the light signal only after the learning period. We argue that the benefit of predictability of stressors is limited when the fish have no way to avoid the stressor.


Subject(s)
Anticipation, Psychological/physiology , Conditioning, Psychological/physiology , Salmo salar/physiology , Stress, Physiological/physiology , Animals , Behavior, Animal/physiology , Cues , Habituation, Psychophysiologic , Hydrocortisone/blood , Oxygen Consumption/physiology
19.
Article in English | MEDLINE | ID: mdl-26549876

ABSTRACT

When Atlantic salmon parr migrate from fresh water towards the sea, they undergo extensive morphological, neural, physiological and behavioural changes. Such changes have the potential to affect their responsiveness to various environmental factors that impose stress. In this study we compared the stress responses in parr and post-smolt salmon following exposure to repeated chasing stress (RCS) for three weeks. At the end of this period, all fish were challenged with a novel stressor and sampled before (T0) and after 1h (T1). Parr had a higher growth rate than post-smolts. Plasma cortisol declined in the RCS groups within the first week suggesting a rapid habituation/desensitisation of the endocrine stress axis. As a result of the desensitised HPI axis, RCS groups showed a reduced cortisol response when exposed to the novel stressor. In preoptic area (POA) crf mRNA levels were higher in all post-smolt groups compared to parr. 11ßhsd2 decreased by RCS and by the novel stressor in post-smolt controls (T1), whereas no effect of either stress was seen in parr. The grs were low in all groups except for parr controls. In pituitary, parr controls had higher levels of crf1r mRNA than the other parr and post-smolt groups, whilst pomcb was higher in post-smolt control groups. Overall, 11ßhsd2 transcript abundance in parr was lower than post-smolt groups; after the novel stressor pomcs, grs and mr were up-regulated in parr control (T1). In summary, we highlight differences in the central stress response between parr and post-smolt salmon following RCS.


Subject(s)
Escape Reaction/physiology , Life Cycle Stages/physiology , Salmo salar/physiology , Stress, Physiological/physiology , Animals , Fresh Water , Gene Expression Regulation , Hydrocortisone/blood , Predatory Behavior/physiology , Preoptic Area/metabolism , Salmo salar/blood , Salmo salar/growth & development , Seawater , Stress, Physiological/genetics , Stress, Psychological/blood , Stress, Psychological/genetics
20.
J Exp Biol ; 218(Pt 16): 2538-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26056242

ABSTRACT

Combinations of stressors occur regularly throughout an animal's life, especially in agriculture and aquaculture settings. If an animal fails to acclimate to these stressors, stress becomes chronic, and a condition of allostatic overload arises with negative results for animal welfare. In the current study, we describe effects of exposing Atlantic salmon parr to an unpredictable chronic stressor (UCS) paradigm for 3 weeks. The paradigm involves exposure of fish to seven unpredictable stressors three times a day. At the end of the trial, experimental and control fish were challenged with yet another novel stressor and sampled before and 1 h after that challenge. Plasma cortisol decreased steadily over time in stressed fish, indicative of exhaustion of the endocrine stress axis. This was confirmed by a lower cortisol response to the novel stressor at the end of the stress period in chronically stressed fish compared with the control group. In the preoptic area (POA) and pituitary gland, chronic stress resulted in decreased gene expression of 11ßhsd2, gr1 and gr2 in the POA and increased expression of those genes in the pituitary gland. POA crf expression and pituitary expression of pomcs and mr increased, whereas interrenal gene expression was unaffected. Exposure to the novel stressor had no effect on POA and interrenal gene expression. In the pituitary, crfr1, pomcs, 11ßhsd2, grs and mr were down-regulated. In summary, our results provide a novel overview of the dynamic changes that occur at every level of the hypothalamic-pituitary gland-interrenal gland (HPI) axis as a result of chronic stress in Atlantic salmon.


Subject(s)
Salmo salar/physiology , Stress, Physiological , Allostasis , Animals , Endocrine Glands/metabolism , Fisheries , Gene Expression , Hydrocortisone/blood , Interrenal Gland/physiology , Pituitary Gland/metabolism , Preoptic Area/physiology , Salmo salar/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...