Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
NanoImpact ; 142019.
Article in English | MEDLINE | ID: mdl-31579298

ABSTRACT

The antimicrobial properties of silver nanomaterials (AgNM) have been exploited in various consumer applications, including textiles such as wound dressings. Understanding how these materials chemically transform throughout their use is necessary to predict their efficacy during use and their behavior after disposal. The aim of this work was to evaluate chemical and physical transformations to a commercial AgNM-containing wound dressing during modeled human exposure to synthetic sweat (SW) or simulated wound fluid (WF). Scanning electron microscopy with energy dispersive X-ray spectroscopy (EDS) revealed the formation of micrometer-sized structures at the wound dressing surface after SW exposure while WF resulted in a largely featureless surface. Measurements by X-ray photoelectron spectroscopy (XPS) revealed a AgCl surface (consistent with EDS) while X-ray diffraction (XRD) found a mixture of zero valent silver and AgCl suggesting the AgNM wound dressings surface formed a passivating AgCl surface layer after SW and WF exposure. For WF, XPS based findings revealed the addition of an adsorbed protein layer based on the nitrogen marker which adsorbed released silver at prolonged exposures. Silver release was evaluated by inductively coupled plasma mass spectrometry which revealed a significant released silver fraction in WF and minimal released silver in SW. Analysis suggests that the protein in WF sequestered a fraction of the released silver which continued with exposure time, suggesting additional processing at the wound dressing surface even after the initial transformation to AgCl. To evaluate the impact on antimicrobial efficacy, zone of inhibition (ZOI) testing was conducted which found no significant change after modeled human exposure compared to the pristine wound dressing. The results presented here suggest AgNM-containing wound dressings transform chemically in simulated human fluids resulting in a material with comparable antimicrobial properties with pristine wound dressings. Ultimately, knowing the resulting chemical properties of the AgNM wound dressings will allow better predictive models to be developed regarding their fate.

2.
Environ Sci Technol ; 52(17): 10048-10056, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30075078

ABSTRACT

The environmental impacts of manufactured nanoparticles are often studied using high-concentration pulse-additions of freshly synthesized nanoparticles, while predicted releases are characterized by chronic low-concentration additions of weathered particles. To test the effects in wetlands of addition rate and nanoparticle speciation on water column silver concentrations, ecosystem impacts, and silver accumulation by biota, we conducted a year-long mesocosm experiment. We compared a pulse addition of Ag0-NPs to chronic weekly additions of either Ag0-NPs or sulfidized silver nanoparticles. The initially high water column silver concentrations in the pulse treatment declined such that after 4 weeks it was lower on average than in the two chronic treatments. While the pulse caused a marked increase in dissolved methane in the first week of the experiment, the chronic treatments had smaller increases in methane concentration that were more prolonged between weeks 28-45. Much like water column silver, most organisms in chronic treatments had comparable silver concentrations to the pulse treatment after only 4 weeks, and all but one organism had similar or higher concentrations than the pulse treatment after one year. Pulse exposures thus both overestimate the intensity of short-term exposures and effects and underestimate the more realistic long-term exposure, ecosystem effects, and accumulation seen in chronic exposures.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , Ecosystem , Silver , Wetlands
3.
Environ Sci Technol ; 50(19): 10370-10376, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27580021

ABSTRACT

The increasing use of silver nanomaterials (AgNMs) in consumer products will result in an increased amount entering the environment, where AgNMs were recently found to cause phytotoxicity in the model plant Lolium multiflorum. To better understand the causes of the phytotoxicity, we have designed a new set of experiments to study the effect of AgNM dissolution. Dissolution of AgNMs was measured over a 1-month period to determine if dissolution alone caused phytotoxicity. Very little dissolution was observed over the testing period, suggesting a different mechanism caused the majority of the toxicity. To further confirm this hypothesis, AgNMs were physically separated from the seeds and plants by a dialysis membrane. Toxicity was ameliorated in AgNM-exposed plants, showing that direct contact between AgNMs and plant seeds/roots is a required condition for the observed phytotoxicity in plant models. Probing further, a surface reactivity assay showed increased surface reactivity of silver nanoparticles (AgNPs) and silver nanocubes (AgNCs) corresponded to increased toxicity compared to silver nanowires (AgNWs). The work here can help build the knowledge base regarding shape control of nanomaterials and reducing unintended side effects.


Subject(s)
Metal Nanoparticles , Silver/pharmacology , Nanostructures , Plant Roots/drug effects , Renal Dialysis
4.
Environ Toxicol Chem ; 35(12): 2941-2947, 2016 12.
Article in English | MEDLINE | ID: mdl-27153481

ABSTRACT

Carbon nanomaterials are considered promising for applications in energy storage, catalysis, and electronics. This has motivated study of their potential environmental toxicity. Recently, a novel nanomaterial consisting of graphene oxide wrapped around a carbon nanotube (CNT) core was synthesized. The resulting soluble graphitic nanofibers were found to have superior catalytic properties, which could result in their use in fuel cells. Before this material undergoes widespread use, its environmental toxicity must be determined because of its aqueous solubility. The authors used the plant species Lolium multiflorum, Solanum lycopersicum, and Lactuca sativa to study the toxicity of the soluble graphitic nanofibers, as well as multiwalled carbon nanotubes (MWCNTs) and graphene oxide, all synthesized in-house. Soluble graphitic nanofiber-exposed plant roots and shoots showed decreased growth, with roots showing more toxicity than shoots. Decreased pH of nanomaterial solutions corresponded to insignificantly decreased root growth, suggesting that another mechanism of toxicity must exist. Agglomeration and adsorption of soluble graphitic nanofibers onto the roots likely caused the remaining toxicity because a gray layer could be seen around the surface of the root. Multiwalled carbon nanotubes showed little toxicity over the concentration range tested, whereas graphene oxide showed a unique pattern of high toxicity at both the lowest and highest concentrations tested. Overall, soluble graphitic nanofibers showed moderate toxicity between that of the more toxic graphene oxide and the relatively nontoxic MWCNTs. Environ Toxicol Chem 2016;35:2941-2947. © 2016 SETAC.


Subject(s)
Graphite/toxicity , Lolium/drug effects , Nanofibers/toxicity , Solanum lycopersicum/drug effects , Adsorption , Catalysis , Graphite/chemistry , Hydrogen-Ion Concentration , Lolium/growth & development , Lolium/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Microscopy, Electron, Transmission , Nanofibers/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Photoelectron Spectroscopy , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Solubility , Spectrum Analysis, Raman
5.
Environ Sci Technol ; 49(16): 10093-8, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26146787

ABSTRACT

The use of antibacterial silver nanomaterials in consumer products ranging from textiles to toys has given rise to concerns over their environmental toxicity. These materials, primarily nanoparticles, have been shown to be toxic to a wide range of organisms; thus methods and materials that reduce their environmental toxicity while retaining their useful antibacterial properties can potentially solve this problem. Here we demonstrate that silver nanocubes display a lower toxicity toward the model plant species Lolium multiflorum while showing similar toxicity toward other environmentally relevant and model organisms (Danio rerio and Caenorhabditis elegans) and bacterial species (Esherichia coli, Bacillus cereus, and Pseudomonas aeruginosa) compared to quasi-spherical silver nanoparticles and silver nanowires. More specifically, in the L. multiflorum experiments, the roots of silver nanocube treated plants were 5.3% shorter than the control, while silver nanoparticle treated plant roots were 39.6% shorter than the control. The findings here could assist in the future development of new antibacterial products that cause less environmental toxicity after their intended use.


Subject(s)
Environmental Pollutants/toxicity , Metal Nanoparticles/toxicity , Silver/toxicity , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Lolium/drug effects , Metal Nanoparticles/ultrastructure , Microbial Sensitivity Tests , Particle Size , Plant Roots/drug effects , Plant Roots/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
6.
Anal Bioanal Chem ; 405(25): 8197-206, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23900671

ABSTRACT

Recently, an atomic force microscopy (AFM)-based approach for quantifying the number of biological molecules conjugated to a nanoparticle surface at low number densities was reported. The number of target molecules conjugated to the analyte nanoparticle can be determined with single nanoparticle fidelity using antibody-mediated self-assembly to decorate the analyte nanoparticles with probe nanoparticles (i.e., quantitative immunostaining). This work refines the statistical models used to quantitatively interpret the observations when AFM is used to image the resulting structures. The refinements add terms to the previous statistical models to account for the physical sizes of the analyte nanoparticles, conjugated molecules, antibodies, and probe nanoparticles. Thus, a more physically realistic statistical computation can be implemented for a given sample of known qualitative composition, using the software scripts provided. Example AFM data sets, using horseradish peroxidase conjugated to gold nanoparticles, are presented to illustrate how to implement this method successfully.


Subject(s)
Immunohistochemistry/methods , Microscopy, Atomic Force/methods , Nanoparticles/analysis , Armoracia/enzymology , Enzymes, Immobilized/analysis , Gold/analysis , Horseradish Peroxidase/analysis , Immunoglobulin G/analysis , Models, Statistical , Nanoparticles/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...