Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 15: 226, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26494154

ABSTRACT

BACKGROUND: A number of bacterial species are capable of growing in various life history modes that enable their survival and persistence in both planktonic free-living stages as well as in biofilm communities. Mechanisms contributing to either planktonic cell or biofilm persistence and survival can be carefully delineated using multiple differential techniques (e.g., genomics and transcriptomics). In this study, we present both proteomic and metabolomic analyses of Vibrio fischeri biofilms, demonstrating the potential for combined differential studies for elucidating life-history switches important for establishing the mutualism through biofilm formation and host colonization. METHODS: The study used a metabolomics/proteomics or "meta-proteomics" approach, referring to the combined protein and metabolic data analysis that bridges the gap between phenotypic changes (planktonic cell to biofilm formation) with genotypic changes (reflected in protein/metabolic profiles). Our methods used protein shotgun construction, followed by liquid chromatography coupled with mass spectrometry (LC-MS) detection and quantification for both free-living and biofilm forming V. fischeri. RESULTS: We present a time-resolved picture of approximately 100 proteins (2D-PAGE and shotgun proteomics) and 200 metabolites that are present during the transition from planktonic growth to community biofilm formation. Proteins involved in stress response, DNA repair damage, and transport appeared to be highly expressed during the biofilm state. In addition, metabolites detected in biofilms correspond to components of the exopolysaccharide (EPS) matrix (sugars and glycerol-derived). Alterations in metabolic enzymes were paralleled by more pronounced changes in concentration of intermediates from the glycolysis pathway as well as several amino acids. CONCLUSIONS: This combined analysis of both types of information (proteins, metabolites) has provided a more complete picture of the biochemical processes of biofilm formation and what determines the switch between the two life history strategies. The reported findings have broad implications for Vibrio biofilm ecology, and mechanisms for successful survival in the host and environment.


Subject(s)
Aliivibrio fischeri/chemistry , Aliivibrio fischeri/physiology , Biofilms/growth & development , Metabolomics , Proteomics , Symbiosis , Chromatography, Liquid , Mass Spectrometry
2.
PLoS One ; 9(7): e101691, 2014.
Article in English | MEDLINE | ID: mdl-25014649

ABSTRACT

Environmentally acquired beneficial associations are comprised of a wide variety of symbiotic species that vary both genetically and phenotypically, and therefore have differential colonization abilities, even when symbionts are of the same species. Strain variation is common among conspecific hosts, where subtle differences can lead to competitive exclusion between closely related strains. One example where symbiont specificity is observed is in the sepiolid squid-Vibrio mutualism, where competitive dominance exists among V. fischeri isolates due to subtle genetic differences between strains. Although key symbiotic loci are responsible for the establishment of this association, the genetic mechanisms that dictate strain specificity are not fully understood. We examined several symbiotic loci (lux-bioluminescence, pil = pili, and msh-mannose sensitive hemagglutinin) from mutualistic V. fischeri strains isolated from two geographically distinct squid host species (Euprymna tasmanica-Australia and E. scolopes-Hawaii) to determine whether slight genetic differences regulated host specificity. Through colonization studies performed in naïve squid hatchlings from both hosts, we found that all loci examined are important for specificity and host recognition. Complementation of null mutations in non-native V. fischeri with loci from the native V. fischeri caused a gain in fitness, resulting in competitive dominance in the non-native host. The competitive ability of these symbiotic loci depended upon the locus tested and the specific squid species in which colonization was measured. Our results demonstrate that multiple bacterial genetic elements can determine V. fischeri strain specificity between two closely related squid hosts, indicating how important genetic variation is for regulating conspecific beneficial interactions that are acquired from the environment.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Symbiosis/physiology , Animals , Genetic Variation/genetics , Host Specificity/genetics , Host Specificity/physiology , Symbiosis/genetics
3.
Microb Ecol ; 65(1): 214-26, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22885637

ABSTRACT

Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates.


Subject(s)
Animal Structures/microbiology , Decapodiformes/microbiology , Photobacterium/classification , Symbiosis , Vibrio/classification , Animals , Australia , Bacteriological Techniques , DNA, Bacterial/genetics , Luminescence , Metagenome , Photobacterium/genetics , Photobacterium/isolation & purification , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Thailand , Vibrio/genetics , Vibrio/isolation & purification
4.
Appl Environ Microbiol ; 79(2): 553-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23144127

ABSTRACT

Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment.


Subject(s)
Aliivibrio fischeri/physiology , Biofilms/growth & development , Kinetoplastida/physiology , Microbial Interactions , Tetrahymena pyriformis/physiology , Adaptation, Biological , Animals , Decapodiformes/microbiology , Decapodiformes/parasitology , Seawater/microbiology , Seawater/parasitology
5.
FEMS Microbiol Ecol ; 81(3): 562-73, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22486781

ABSTRACT

Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.


Subject(s)
Aliivibrio fischeri/physiology , Decapodiformes/microbiology , Symbiosis , Aliivibrio fischeri/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Decapodiformes/physiology , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Flagella/metabolism , Genes, Regulator , Mutation , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...