Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(26): e2312736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506626

ABSTRACT

Spin-orbit interactions arise whenever the bulk inversion symmetry and/or structural inversion symmetry of a crystal is broken providing a bridge between a qubit's spin and orbital degree of freedom. While strong interactions can facilitate fast qubit operations by all-electrical control, they also provide a mechanism to couple charge noise thereby limiting qubit lifetimes. Previously believed to be negligible in bulk silicon, recent silicon nano-electronic devices have shown larger than bulk spin-orbit coupling strengths from Dresselhaus and Rashba couplings. Here, it is shown that with precision placement of phosphorus atoms in silicon along the [110] direction (without inversion symmetry) or [111] direction (with inversion symmetry), a wide range of Dresselhaus and Rashba coupling strength can be achieved from zero to 1113 × 10-13eV-cm. It is shown that with precision placement of phosphorus atoms, the local symmetry (C2v, D2d, and D3d) can be changed to engineer spin-orbit interactions. Since spin-orbit interactions affect both qubit operation and lifetimes, understanding their impact is essential for quantum processor design.

2.
ACS Nano ; 17(22): 22601-22610, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37930801

ABSTRACT

Universal quantum computing requires fast single- and two-qubit gates with individual qubit addressability to minimize decoherence errors during processor operation. Electron spin qubits using individual phosphorus donor atoms in silicon have demonstrated long coherence times with high fidelities, providing an attractive platform for scalable quantum computing. While individual qubit addressability has been demonstrated by controlling the hyperfine interaction between the electron and nuclear wave function in a global magnetic field, the small hyperfine Stark coefficient of 0.34 MHz/MV m-1 achieved to date has limited the speed of single quantum gates to ∼42 µs to avoid rotating neighboring qubits due to power broadening from the antenna. The use of molecular 2P qubits with more than one donor atom has not only demonstrated fast (0.8 ns) two-qubit SWAP gates and long spin relaxation times of ∼30 s but provides an alternate way to achieve high selectivity of the qubit resonance frequency. Here, we show in two different devices that by placing the donors with comparable interatomic spacings (∼0.8 nm) but along different crystallographic axes, either the [110] or [310] orientations using STM lithography, we can engineer the hyperfine Stark shift from 1 MHz/MV m-1 to 11.2 MHz/MV m-1, respectively, a factor of 10 difference. NEMO atomistic calculations show that larger hyperfine Stark coefficients of up to ∼70 MHz/MV m-1 can be achieved within 2P molecules by placing the donors ≥5 nm apart. When combined with Gaussian pulse shaping, we show that fast single qubit gates with 2π rotation times of 10 ns and ∼99% fidelity single qubit operations are feasible without affecting neighboring qubits. By increasing the single qubit gate time to ∼550 ns, two orders of magnitude faster than previously measured, our simulations confirm that >99.99% single qubit control fidelities are achievable.

3.
Adv Mater ; 35(6): e2201625, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36208088

ABSTRACT

Phosphorus atoms in silicon offer a rich quantum computing platform where both nuclear and electron spins can be used to store and process quantum information. While individual control of electron and nuclear spins has been demonstrated, the interplay between them during qubit operations has been largely unexplored. This study investigates the use of exchange-based operation between donor bound electron spins to probe the local magnetic fields experienced by the qubits with exquisite precision at the atomic scale. To achieve this, coherent exchange oscillations are performed between two electron spin qubits, where the left and right qubits are hosted by three and two phosphorus donors, respectively. The frequency spectrum of exchange oscillations shows quantized changes in the local magnetic fields at the qubit sites, corresponding to the different hyperfine coupling between the electron and each of the qubit-hosting nuclear spins. This ability to sense the hyperfine fields of individual nuclear spins using the exchange interaction constitutes a unique metrology technique, which reveals the exact crystallographic arrangements of the phosphorus atoms in the silicon crystal for each qubit. The detailed knowledge obtained of the local magnetic environment can then be used to engineer hyperfine fields in multi-donor qubits for high-fidelity two-qubit gates.

4.
Sci Adv ; 8(36): eabq0455, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36070386

ABSTRACT

State preparation and measurement of single-electron spin qubits typically rely on spin-to-charge conversion where a spin-dependent charge transition of the electron is detected by a coupled charge sensor. For high-fidelity, fast readout, this process requires that the qubit energy is much larger than the temperature of the system limiting the temperature range for measurements. Here, we demonstrate an initialization and measurement technique that involves voltage ramps rather than static voltages allowing us to achieve state-to-charge readout fidelities above 99% for qubit energies almost half that required by traditional methods. This previously unidentified measurement technique is highly relevant for achieving high-fidelity electron spin readout at higher temperature operation and offers a number of pragmatic benefits compared to traditional energy-selective readout such as real-time dynamic feedback and minimal alignment procedures.

5.
Sci Adv ; 4(7): eaaq1459, 2018 07.
Article in English | MEDLINE | ID: mdl-30027114

ABSTRACT

Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic precision lithography, we can place a single P donor next to a 2P molecule 16 ± 1 nm apart and use their distinctive hyperfine coupling strengths to address qubits at vastly different resonance frequencies. In particular, the single donor yields two hyperfine peaks separated by 97 ± 2.5 MHz, in contrast to the donor molecule that exhibits three peaks separated by 262 ± 10 MHz. Atomistic tight-binding simulations confirm the large hyperfine interaction strength in the 2P molecule with an interdonor separation of ~0.7 nm, consistent with lithographic scanning tunneling microscopy images of the 2P site during device fabrication. We discuss the viability of using donor molecules for built-in addressability of electron spin qubits in silicon.

SELECTION OF CITATIONS
SEARCH DETAIL
...