Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(3): e9886, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36919019

ABSTRACT

In the Flora of China account of Saxifraga mengtzeana Engl. & Irmsch., eight synonyms were attributed to it and one variant, recognized as Saxifraga epiphylla Gornall & Ohba, was split from it. This study reevaluates the taxonomic status of some of the synonyms and of the segregated species in light of new evidence presented here. Morphological and molecular evidence demonstrate that collections from northwestern Yunnan and Sichuan are genetically differentiated from those in southeastern Yunnan and neighboring Guangxi. Observations in the field and in cultivation show that the peltate petiole attachment diagnostic of S. mengtzeana var. peltifolia Engl. & Irmsch. is developmentally labile. Similar observations combined with molecular data show that viviparous phenotypes, formerly treated as S. epiphylla, although largely under genetic control, occur sporadically throughout the ranges of both northern and southern taxa. Collections from northwestern Yunnan and Sichuan are best recognized as Saxifraga geifolia Balf.f., whereas those from southeastern Yunnan and neighboring Guangxi are S. mengtzeana. Peltate-leaved variants of the latter are given no status and are relegated to complete synonymy. Viviparous phenotypes of S. mengtzeana and S. geifolia are recognized at the rank of forma.

2.
Ecol Evol ; 13(1): e9694, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36620410

ABSTRACT

Comprising ca. 200 species, Saxifraga sect. Ciliatae is the most species-rich section of Saxifraga s.str., whose center of diversity is in the Tibeto-Himalayan region. The infra-sectional classification of sect. Ciliatae is still in debate due to the high level of species richness, as well as remarkable variations of habitat, morphology, physiology and life cycles. Subdivisions of this section proposed in various taxonomic systems have not been adequately tested in previous phylogenetic studies, partly due to low taxonomic sampling density, but also to the use of few DNA markers. In order to achieve a more robust infra-sectional classification of sect. Ciliatae, complete chloroplast genomes of 94 taxa from this section were analyzed, of which 93 were newly sequenced, assembled and annotated. The length of the 94 plastomes of sect. Ciliatae taxa range from 143,479 to 159,938 bp, encoding 75 to 79 unique protein-coding genes (PCGs). Analyses of the 94 plastomes revealed high conservation in structural organization, gene arrangement, and gene content. Gene loss and changes of IR boundaries were detected but in extremely low frequency. The molecular phylogenetic tree from concatenated PCGs and complete chloroplast genome sequences exhibited high resolution and support values and confirms that sect. Ciliatae is monophyletic. Three well-supported clades were revealed within the section that agree relatively well with the subsectional taxonomy of Gornall (1987), but some minor modifications should be made. Firstly, the monotypic subsection Cinerascentes should be abandoned and its constituent species, S. cinerascens, assigned to subsect. Gemmiparae. Secondly, subsections Rosulares and Serpyllifoliae should be merged and become subsect. Rosulares. Section Ciliatae thus comprises: subsect. Hirculoideae Engl. & Irmsch.; subsect. Rosulares Gornall; subsect. Gemmiparae Engl. & Irmsch.; subsect. Flagellares (C. B. Clarke) Engl. & Irmsch. and subsect. Hemisphaericae (Engl. & Irmsch.) Gornall.

3.
Sci Data ; 9(1): 1, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013360

ABSTRACT

The vascular flora of Britain and Ireland is among the most extensively studied in the world, but the current knowledge base is fragmentary, with taxonomic, ecological and genetic information scattered across different resources. Here we present the first comprehensive data repository of native and alien species optimized for fast and easy online access for ecological, evolutionary and conservation analyses. The inventory is based on the most recent reference flora of Britain and Ireland, with taxon names linked to unique Kew taxon identifiers and DNA barcode data. Our data resource for 3,227 species and 26 traits includes existing and unpublished genome sizes, chromosome numbers and life strategy and life-form assessments, along with existing data on functional traits, species distribution metrics, hybrid propensity, associated biomes, realized niche description, native status and geographic origin of alien species. This resource will facilitate both fundamental and applied research and enhance our understanding of the flora's composition and temporal changes to inform conservation efforts in the face of ongoing climate change and biodiversity loss.


Subject(s)
Biodiversity , Tracheophyta/classification , Databases as Topic , Ecosystem , Introduced Species , Ireland , United Kingdom
4.
Front Plant Sci ; 8: 1325, 2017.
Article in English | MEDLINE | ID: mdl-28804492

ABSTRACT

The effects of rapid, recent uplift of the Hengduan Mountains on evolution and diversification of young floristic lineages still remain unclear. Here, we investigate diversification of three closely related Saxifraga species with a distribution restricted to the Hengduan Mountains (HM) and southern Tibet, and comment on their taxonomy based on molecular evidence. Three chloroplast DNA fragments (rbcL, trnL-F, trnS-G) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to study genetic structure across 104 individuals from 12 populations of Saxifraga umbellulata, S. pasumensis, and S. banmaensis. Chloroplast DNA (cpDNA) phylogenies revealed two well supported clades, corresponding to S. umbellulata and S. pasumensis plus S. banmaensis. Topology of the ITS phylogeny was largely congruent with that generated from cpDNA haplotypes, but with minor conflicts which might be caused by incomplete lineage sorting. Analyses of molecular variance of both cpDNA and ITS datasets revealed that most variation was held between S. pasumensis s.l. (with S. banmaensis) and S. umbellulata (92.31% for cpDNA; 69.78% for ITS), suggesting a high degree of genetic divergence between them. Molecular clock analysis based on ITS dataset suggested that the divergence between S. pasumensis s.l. and S. umbellulata can be dated to 8.50 Ma, probably a result of vicariant allopatric diversification associated with the uplift events of the HM. Vicariance associated with HM uplifts may also have been responsible for infraspecific differentiation in S. pasumensis. In contrast, infraspecific differentiation in S. umbellulata was most likely triggered by Quaternary glaciations. The much lower levels of gene diversity within populations of S. pasumensis compared with S. umbellulata could have resulted from both range contractions and human collection on account of its putative medicinal properties. Combining evidence from morphology, geographical distributions and molecular phylogenetic data, we recommend that S. banmaensis should be treated as a synonym of S. pasumensis which in turn, and based on the same sources of evidence, should be treated as a separate species rather than as a variety of S. umbellulata.

SELECTION OF CITATIONS
SEARCH DETAIL
...