Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2667, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32471986

ABSTRACT

An increasing current through a superconductor can result in a discontinuous increase in the differential resistance at the critical current. This critical current is typically associated either with breaking of Cooper-pairs or with the onset of collective motion of vortices. Here we measure the current-voltage characteristics of superconducting films at low temperatures and high magnetic fields. Using heat-balance considerations we demonstrate that the current-voltage characteristics are well explained by electron overheating enhanced by the thermal decoupling of the electrons from the host phonons. By solving the heat-balance equation we are able to accurately predict the critical currents in a variety of experimental conditions. The heat-balance approach is universal and applies to diverse situations from critical currents to climate change. One disadvantage of the universality of this approach is its insensitivity to the details of the system, which limits our ability to draw conclusions regarding the initial departure from equilibrium.

2.
Sci Adv ; 5(3): eaau3826, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30899781

ABSTRACT

For more than two decades, there have been reports on an unexpected metallic state separating the established superconducting and insulating phases of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here, we show that for two very different thin-film superconductors, amorphous indium oxide and a single crystal of 2H-NbSe2, this metallic state can be eliminated by adequately filtering external radiation. Our results show that the appearance of temperature-independent, metallic-like transport at low temperatures is sufficiently described by the extreme sensitivity of these superconducting films to external perturbations. We relate this sensitivity to the theoretical observation that, in two dimensions, superconductivity is only marginally stable.

SELECTION OF CITATIONS
SEARCH DETAIL
...