Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 97(11): e0079123, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37916833

ABSTRACT

IMPORTANCE: Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Antiviral Restriction Factors , Humans , Adenoviridae/genetics , Adenoviridae Infections/metabolism , Adenoviruses, Human/physiology , Antiviral Restriction Factors/metabolism , Sumoylation
2.
Proc Natl Acad Sci U S A ; 120(44): e2310770120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37883435

ABSTRACT

The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.


Subject(s)
Adenoviruses, Human , Oncogene Proteins, Viral , Animals , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Adenovirus E1B Proteins/genetics , Adenovirus E1B Proteins/metabolism , Cell Transformation, Neoplastic/genetics , Adenoviridae/genetics , Adenoviridae/metabolism , Oncogene Proteins, Viral/metabolism , DNA , Mammals/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...