Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 4(6): 711-723, 2022 06.
Article in English | MEDLINE | ID: mdl-35739397

ABSTRACT

Production of oxidized biomass, which requires regeneration of the cofactor NAD+, can be a proliferation bottleneck that is influenced by environmental conditions. However, a comprehensive quantitative understanding of metabolic processes that may be affected by NAD+ deficiency is currently missing. Here, we show that de novo lipid biosynthesis can impose a substantial NAD+ consumption cost in proliferating cancer cells. When electron acceptors are limited, environmental lipids become crucial for proliferation because NAD+ is required to generate precursors for fatty acid biosynthesis. We find that both oxidative and even net reductive pathways for lipogenic citrate synthesis are gated by reactions that depend on NAD+ availability. We also show that access to acetate can relieve lipid auxotrophy by bypassing the NAD+ consuming reactions. Gene expression analysis demonstrates that lipid biosynthesis strongly anti-correlates with expression of hypoxia markers across tumor types. Overall, our results define a requirement for oxidative metabolism to support biosynthetic reactions and provide a mechanistic explanation for cancer cell dependence on lipid uptake in electron acceptor-limited conditions, such as hypoxia.


Subject(s)
NAD , Neoplasms , Cell Proliferation , Electrons , Humans , Hypoxia , Lipids , NAD/metabolism
2.
Am J Public Health ; 111(2): 247-252, 2021 02.
Article in English | MEDLINE | ID: mdl-33211588

ABSTRACT

In April 2020, in light of COVID-19-related blood shortages, the US Food and Drug Administration (FDA) reduced the deferral period for men who have sex with men (MSM) from its previous duration of 1 year to 3 months.Although originally born out of necessity, the decades-old restrictions on MSM donors have been mitigated by significant advancements in HIV screening, treatment, and public education. The severity of the ongoing COVID-19 pandemic-and the urgent need for safe blood products to respond to such crises-demands an immediate reconsideration of the 3-month deferral policy for MSM.We review historical HIV testing and transmission evidence, discuss the ethical ramifications of the current deferral period, and examine the issue of noncompliance with donor deferral rules. We also propose an eligibility screening format that involves an individual risk-based screening protocol and, unlike current FDA guidelines, does not effectively exclude donors on the basis of gender identity or sexual orientation. Our policy proposal would allow historically marginalized community members to participate with dignity in the blood donation process without compromising blood donation and transfusion safety outcomes.


Subject(s)
Blood Donors/ethics , Blood Safety/standards , Blood Transfusion/standards , COVID-19/epidemiology , Donor Selection/standards , Sexual and Gender Minorities/statistics & numerical data , COVID-19/therapy , COVID-19/transmission , HIV Infections/transmission , Health Policy , Homosexuality, Male/statistics & numerical data , Humans , Male , Transgender Persons/statistics & numerical data , United States
3.
Mol Cell ; 80(4): 682-698.e7, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33152268

ABSTRACT

Knowledge of fundamental differences between breast cancer subtypes has driven therapeutic advances; however, basal-like breast cancer (BLBC) remains clinically intractable. Because BLBC exhibits alterations in DNA repair enzymes and cell-cycle checkpoints, elucidation of factors enabling the genomic instability present in this subtype has the potential to reveal novel anti-cancer strategies. Here, we demonstrate that BLBC is especially sensitive to suppression of iron-sulfur cluster (ISC) biosynthesis and identify DNA polymerase epsilon (POLE) as an ISC-containing protein that underlies this phenotype. In BLBC cells, POLE suppression leads to replication fork stalling, DNA damage, and a senescence-like state or cell death. In contrast, luminal breast cancer and non-transformed mammary cells maintain viability upon POLE suppression but become dependent upon an ATR/CHK1/CDC25A/CDK2 DNA damage response axis. We find that CDK1/2 targets exhibit hyperphosphorylation selectively in BLBC tumors, indicating that CDK2 hyperactivity is a genome integrity vulnerability exploitable by targeting POLE.


Subject(s)
Breast Neoplasms/pathology , Carcinoma, Basal Cell/pathology , Cyclin-Dependent Kinase 2/metabolism , DNA Polymerase II/metabolism , Genomic Instability , Poly-ADP-Ribose Binding Proteins/metabolism , Animals , Apoptosis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/metabolism , Cell Cycle , Cell Proliferation , Cyclin-Dependent Kinase 2/genetics , DNA Damage , DNA Polymerase II/genetics , Female , Humans , Mice , Mice, Inbred NOD , Phosphorylation , Poly-ADP-Ribose Binding Proteins/genetics , Signal Transduction , Tumor Cells, Cultured
4.
J Biol Chem ; 292(15): 6303-6311, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28223357

ABSTRACT

mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.


Subject(s)
Multiprotein Complexes/metabolism , Phosphatidic Acids/biosynthesis , TOR Serine-Threonine Kinases/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Hep G2 Cells , Humans , MCF-7 Cells , Male , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Multiprotein Complexes/genetics , Oleic Acid/pharmacology , Phosphatidic Acids/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...