Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35890879

ABSTRACT

Since the 20th century, a rapid process of motorization has begun. The main goal of researchers, engineers and technology companies is to increase the safety and optimality of the movement of vehicles, as well as to reduce the environmental damage caused by the automotive industry. The difficulty of managing traffic flows is that cars are driven by a person and their behavior, even in similar situations, is different and difficult to predict. To solve this problem, ground-based unmanned vehicles are increasingly being developed and implemented; however, like any other intelligent system, it is necessary to train different road scenarios. Currently, an engineer is driving an unmanned vehicle for training and thousands of kilometers are being driven for training. Of course, this approach to training unmanned vehicles is very long, and it is impossible to reproduce all the scenarios that can be found in real operations on a real road. Based on this, we offer a simulator of a realistic urban environment which allows you to reduce the training time and allows you to generate all kinds of events. To implement such a simulator, it is necessary to develop a method that would allow recreating a realistic world in one passage with cameras (monocular) installed on board the vehicle. Based on this, the purpose of this work is to develop an intelligent vehicle recognition system using convolutional neural networks, which allows you to create mesh objects for further placement in the simulator. It is important to note that the resulting objects should be optimal in size so as not to overload the system, since a large number of road infrastructure objects are stored there. Also, neural complexity should not be excessive. In this paper, the general concept and classification of convolutional neural networks are given, which allow solving the problem of recognizing 3D objects in images. Based on the analysis, the existing neural network architectures do not solve the problems mentioned above. In this connection, the authors first of all carried out the design of the system according to the methodology of modeling business processes, and also modified and developed the architecture of the neural network, which allows classifying objects with sufficient accuracy, obtaining optimized mesh objects and reducing computational complexity. The methods proposed in this paper are used in a simulator of a realistic urban environment, which reduces the time and computational costs when training unmanned transport systems.


Subject(s)
Computer Simulation , Imaging, Three-Dimensional , Automobile Driving , Cities , Humans , Neural Networks, Computer
2.
Sensors (Basel) ; 22(12)2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35746234

ABSTRACT

The train horn sound is an active audible warning signal used for warning commuters and railway employees of the oncoming train(s), assuring a smooth operation and traffic safety, especially at barrier-free crossings. This work studies deep learning-based approaches to develop a system providing the early detection of train arrival based on the recognition of train horn sounds from the traffic soundscape. A custom dataset of train horn sounds, car horn sounds, and traffic noises is developed to conduct experiments and analysis. We propose a novel two-stream end-to-end CNN model (i.e., THD-RawNet), which combines two approaches of feature extraction from raw audio waveforms, for audio classification in train horn detection (THD). Besides a stream with a sequential one-dimensional CNN (1D-CNN) as in existing sound classification works, we propose to utilize multiple 1D-CNN branches to process raw waves in different temporal resolutions to extract an image-like representation for the 2D-CNN classification part. Our experiment results and comparative analysis have proved the effectiveness of the proposed two-stream network and the method of combining features extracted in multiple temporal resolutions. The THD-RawNet obtained better accuracies and robustness compared to those of baseline models trained on either raw audio or handcrafted features, in which at the input size of one second the network yielded an accuracy of 95.11% for testing data in normal traffic conditions and remained above a 93% accuracy for the considerable noisy condition of-10 dB SNR. The proposed THD system can be integrated into the smart railway crossing systems, private cars, and self-driving cars to improve railway transit safety.


Subject(s)
Automobiles , Noise , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...