Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Elife ; 132024 May 16.
Article in English | MEDLINE | ID: mdl-38752835

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Subject(s)
Hibernation , Animals , Hibernation/physiology , Energy Metabolism , Skeletal Muscle Myosins/metabolism , Ursidae/metabolism , Ursidae/physiology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics
2.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38014200

ABSTRACT

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20°C). Upon repeating loaded Mant-ATP chase experiments at 8°C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.

3.
Wilderness Environ Med ; 34(3): 341-345, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37301628

ABSTRACT

INTRODUCTION: We have previously described negative energy balance (ie, -9.7±3.4 MJ/d) and weight loss (Δ-1.5 ± 0.7 kg) influenced by high levels of energy expenditure (ie, 17.4±2.6 MJ/d) during remote expeditionary hunting in Alaska. Despite negative energy balance, participants retained skeletal muscle. The purpose of this pilot study was to measure skeletal muscle protein synthesis and examine molecular markers of skeletal muscle protein metabolism under similar conditions of physical and nutrient stress. METHODS: The "virtual biopsy method" was used to evaluate integrated fractional synthetic rates (FSRs) of muscle protein from blood samples in 4 participants. Muscle biopsies were taken to measure molecular markers of muscle protein kinetics (ie, FSTL1, MEF2, MYOD1, B2M, and miR-1-3p, -206, -208b, 23a, and 499a) using real-time polymerase chain reaction. RESULTS: Our findings in 4 participants (2 females [28 and 62 y of age; 66.2 and 71.8 kg body weight; 25.5 and 26.7 kg/m2 body mass index] and 2 males [47 and 56 y of age; 87.5 and 91.4 kg body weight; 26.1 and 28.3 kg/m2 body mass index]) describe mean muscle FSRs of serum carbonic anhydrase (2.4%) and creatine kinase M-type (4.0%) and positive increments in molecular regulation. CONCLUSIONS: Preservation of skeletal muscle under conditions of physical and nutrient stress seems to be supported by positive inflection of skeletal muscle FSR and molecular activation.


Subject(s)
Follistatin-Related Proteins , Muscle Proteins , Male , Female , Humans , Muscle Proteins/metabolism , Alaska , Hunting , Pilot Projects , Muscle, Skeletal , Body Weight , Energy Metabolism , Follistatin-Related Proteins/metabolism
4.
Front Neurol ; 14: 1009718, 2023.
Article in English | MEDLINE | ID: mdl-36779060

ABSTRACT

Targeted temperature management (TTM) is standard of care for neonatal hypoxic ischemic encephalopathy (HIE). Prevention of fever, not excluding cooling core body temperature to 33°C, is standard of care for brain injury post cardiac arrest. Although TTM is beneficial, HIE and cardiac arrest still carry significant risk of death and severe disability. Mammalian hibernation is a gold standard of neuroprotective metabolic suppression, that if better understood might make TTM more accessible, improve efficacy of TTM and identify adjunctive therapies to protect and regenerate neurons after hypoxic ischemia brain injury. Hibernating species tolerate cerebral ischemia/reperfusion better than humans and better than other models of cerebral ischemia tolerance. Such tolerance limits risk of transitions into and out of hibernation torpor and suggests that a barrier to translate hibernation torpor may be human vulnerability to these transitions. At the same time, understanding how hibernating mammals protect their brains is an opportunity to identify adjunctive therapies for TTM. Here we summarize what is known about the hemodynamics of hibernation and how the hibernating brain resists injury to identify opportunities to translate these mechanisms for neurocritical care.

5.
BMC Ecol Evol ; 22(1): 126, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329382

ABSTRACT

BACKGROUND: Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species. RESULTS: Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene. CONCLUSIONS: This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.


Subject(s)
Arvicolinae , Ecosystem , Animals , Population Dynamics , Arctic Regions , DNA, Ancient
6.
Mol Phylogenet Evol ; 168: 107399, 2022 03.
Article in English | MEDLINE | ID: mdl-35026429

ABSTRACT

Collared lemmings (Dicrostonyx) are cold adapted rodents, keystone animals in the tundra communities and the model taxa in studies of Arctic genetic diversity and Quaternary paleontology. We examined mitochondrial and nuclear genomic variation to reconstruct phylogenetic relationships among the Eurasian D. torquatus and North American D. groenlandicus, D. hudsonius and evaluate biogeographic hypothesis of the two colonization events of North America from Eurasia based on morphological variation in dental traits. The nuclear and mitogenome phylogenies support reciprocal monophyly of each species but reveal conflicting relationships among species. The mitogenome tree likely reflects ancient mitochondrial replacement between currently isolated D. groenlandicus and D. hudsonius. The nuclear genome phylogeny reveals species cladogenesis and supports the hypothesis that D. hudsonius with primitive and distinct molar morphology represents a relic of the first migration event from Eurasia to North America. Species widely distributed in the North American Arctic, D. groenlandicus, with advanced dental morphology originated from a later colonization event across the Bering Land Bridge. This study shows ancient mitochondrial capture between two Arctic species and emphasizes the importance of multilocus approaches for phylogenetic inference.


Subject(s)
Genome, Mitochondrial , Animals , Arvicolinae , DNA, Mitochondrial/genetics , Genetic Speciation , Genomics , Phylogeny
7.
Sci Rep ; 11(1): 8281, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859306

ABSTRACT

Physical inactivity leads to losses of bone mass and strength in most mammalian species. In contrast, hibernating bears show no bone loss over the prolonged periods (4-6 months) of immobility during winter, which suggests that they have adaptive mechanisms to preserve bone mass. To identify transcriptional changes that underlie molecular mechanisms preventing disuse osteoporosis, we conducted a large-scale gene expression screening in the trabecular bone and bone marrow, comparing hibernating and summer active bears through sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated down-regulation of genes involved in bone resorption, osteoclast differentiation and signaling, and apoptosis during hibernation. These findings are consistent with previous histological findings and likely contribute to the preservation of bone during the immobility of hibernation. In contrast, no significant enrichment indicating directional changes in gene expression was detected in the gene sets of bone formation and osteoblast signaling in hibernating bears. Additionally, we revealed significant and coordinated transcriptional induction of gene sets involved in aerobic energy production including fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, and mitochondrial metabolism. Mitochondrial oxidation was likely up-regulated by transcriptionally induced AMPK/PGC1α pathway, an upstream stimulator of mitochondrial function.


Subject(s)
Bone Density/genetics , Bone Resorption/genetics , Bone and Bones/metabolism , Hibernation/physiology , Osteogenesis/genetics , Transcription, Genetic/genetics , Ursidae/genetics , Ursidae/metabolism , Adenylate Kinase/metabolism , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Gene Expression , Mitochondria/genetics , Mitochondria/metabolism , Osteoclasts/physiology , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome/genetics
8.
Sci Rep ; 10(1): 9010, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488149

ABSTRACT

Physical inactivity generates muscle atrophy in most mammalian species. In contrast, hibernating mammals demonstrate limited muscle loss over the prolonged intervals of immobility during winter, which suggests that they have adaptive mechanisms to reduce disuse muscle atrophy. To identify transcriptional programs that underlie molecular mechanisms attenuating muscle loss, we conducted a large-scale gene expression profiling in quadriceps muscle of arctic ground squirrels, comparing hibernating (late in a torpor and during torpor re-entry after arousal) and summer active animals using next generation sequencing of the transcriptome. Gene set enrichment analysis showed a coordinated up-regulation of genes involved in all stages of protein biosynthesis and ribosome biogenesis during both stages of hibernation that suggests induction of translation during interbout arousals. Elevated proportion of down-regulated genes involved in apoptosis, NFKB signaling as well as significant under expression of atrogenes, upstream regulators (FOXO1, FOXO3, NFKB1A), key components of the ubiquitin proteasome pathway (FBXO32, TRIM63, CBLB), and overexpression of PPARGC1B inhibiting proteolysis imply suppression of protein degradation in muscle during arousals. The induction of protein biosynthesis and decrease in protein catabolism likely contribute to the attenuation of disuse muscle atrophy through prolonged periods of immobility of hibernation.


Subject(s)
Gene Expression Profiling , Muscle, Skeletal/physiology , Muscular Atrophy/genetics , Sciuridae/physiology , Alaska , Animals , Body Temperature , Fatty Acids/genetics , Fatty Acids/metabolism , Female , Hibernation , High-Throughput Nucleotide Sequencing , Male , Torpor
9.
Proc Natl Acad Sci U S A ; 117(6): 3026-3033, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988125

ABSTRACT

The Arctic climate was warmer than today at the last interglacial and the Holocene thermal optimum. To reveal the impact of past climate-warming events on the demographic history of an Arctic specialist, we examined both mitochondrial and nuclear genomic variation in the collared lemming (Dicrostonyx torquatus, Pallas), a keystone species in tundra communities, across its entire distribution in northern Eurasia. The ancestral phylogenetic position of the West Beringian group and divergence time estimates support the hypothesis of continental range contraction to a single refugial area located in West Beringia during high-magnitude warming of the last interglacial, followed by westward recolonization of northern Eurasia in the last glacial period. The West Beringian group harbors the highest mitogenome diversity and its inferred demography indicates a constantly large effective population size over the Late Pleistocene to Holocene. This suggests that northward forest expansion during recent warming of the Holocene thermal optimum did not affect the gene pool of the collared lemming in West Beringia but reduced genomic diversity and effective population size in all other regions of the Eurasian Arctic. Demographic inference from genomic diversity was corroborated by species distribution modeling showing reduction in species distribution during past climate warming. These conclusions are supported by recent paleoecological evidence suggesting smaller temperature increases and moderate northward forest advances in the extreme northeast of Eurasia during the Late Pleistocene-to-Holocene warming events. This study emphasizes the importance of West Beringia as a potential refugium for cold-adapted Arctic species under ongoing climate warming.


Subject(s)
Arvicolinae/genetics , Genetic Variation/genetics , Global Warming/history , Animals , Arctic Regions , Asia , Europe , Genome/genetics , Genome, Mitochondrial/genetics , Genomics , History, Ancient , Refugium , Tundra
10.
Mitochondrial DNA B Resour ; 1(1): 878-879, 2016.
Article in English | MEDLINE | ID: mdl-28642935

ABSTRACT

The complete mitochondrial genomes of two species of the North American collared lemmings were obtained by using PCR amplification and capillary sequencing (GenBank accession nos. KX712239 and KX683880). The collared lemming mitochondrial genomes are 16,341 and 16,338 base pairs long and show the gene order, contents and gene strand asymmetry typical for mammals. The mitogenome sequences provide an important genomic resource for the collared lemmings, which are model study species in Arctic genetic diversity and biogeographic history.

11.
Mitochondrial DNA B Resour ; 1(1): 824-825, 2016.
Article in English | MEDLINE | ID: mdl-28670624

ABSTRACT

The complete mitochondrial genome the Eurasian collared lemming was obtained by using PCR amplification and capillary sequencing (GenBank accession no. KX066190). The collared lemming mitochondrial genome is 16,340 base pairs long and shows the gene order, contents and gene strand asymmetry typical for mammals. The mitogenome sequence provides an important new genomic resource for the collared lemming, which is a model study species in Arctic phylogeography and biotic history.

12.
Mol Ecol ; 23(22): 5524-37, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25314618

ABSTRACT

Hibernation is an energy-saving adaptation that involves a profound suppression of physical activity that can continue for 6-8 months in highly seasonal environments. While immobility and disuse generate muscle loss in most mammalian species, in contrast, hibernating bears and ground squirrels demonstrate limited muscle atrophy over the prolonged periods of physical inactivity during winter, suggesting that hibernating mammals have adaptive mechanisms to prevent disuse muscle atrophy. To identify common transcriptional programmes that underlie molecular mechanisms preventing muscle loss, we conducted a large-scale gene expression screen in hind limb muscles comparing hibernating and summer-active black bears and arctic ground squirrels using custom 9600 probe cDNA microarrays. A molecular pathway analysis showed an elevated proportion of overexpressed genes involved in all stages of protein biosynthesis and ribosome biogenesis in muscle of both species during torpor of hibernation that suggests induction of translation at different hibernation states. The induction of protein biosynthesis probably contributes to attenuation of disuse muscle atrophy through the prolonged periods of immobility of hibernation. The lack of directional changes in genes of protein catabolic pathways does not support the importance of metabolic suppression for preserving muscle mass during winter. Coordinated reduction in multiple genes involved in oxidation-reduction and glucose metabolism detected in both species is consistent with metabolic suppression and lower energy demand in skeletal muscle during inactivity of hibernation.


Subject(s)
Adaptation, Physiological/genetics , Comparative Genomic Hybridization , Hibernation , Muscular Atrophy/genetics , Sciuridae/genetics , Ursidae/genetics , Animals , Male , Oligonucleotide Array Sequence Analysis , Protein Biosynthesis , Transcriptome
13.
BMC Genomics ; 14: 567, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23957789

ABSTRACT

BACKGROUND: Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear. RESULTS: We identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation. CONCLUSIONS: In this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions.


Subject(s)
Gene Expression Profiling , Hibernation/genetics , Phenotype , Sciuridae/genetics , Sciuridae/physiology , Animals , Caloric Restriction , Circadian Clocks/genetics , Cold Temperature , Female , Gene Knockout Techniques , Humans , Mice , Oligonucleotide Array Sequence Analysis , PPAR alpha/deficiency , PPAR alpha/genetics , Reperfusion Injury/genetics , Sleep Deprivation/genetics
14.
PLoS One ; 7(7): e41697, 2012.
Article in English | MEDLINE | ID: mdl-22911845

ABSTRACT

Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.


Subject(s)
Ants/genetics , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Paleontology , Phylogeny , Animals , Base Sequence , Evolution, Molecular , Genetic Variation , Haplotypes/genetics , Likelihood Functions , Molecular Sequence Data , Species Specificity
15.
Funct Integr Genomics ; 12(2): 357-65, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22351243

ABSTRACT

Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P < 0.01 and fold change >1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.


Subject(s)
Hibernation/genetics , Ilium/anatomy & histology , Ilium/physiology , Up-Regulation , Ursidae/physiology , Animals , Apoptosis/genetics , Biosynthetic Pathways/genetics , Bone Resorption/genetics , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Genes , Ilium/metabolism , Male , Oligonucleotide Array Sequence Analysis , Organ Size , Osteogenesis/genetics , Ursidae/genetics , Ursidae/metabolism
16.
Mol Ecol ; 20(20): 4346-70, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21919986

ABSTRACT

Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.


Subject(s)
DNA, Mitochondrial/genetics , Evolution, Molecular , Phylogeography , Shrews/genetics , Animals , Climate Change , Ecosystem , Genetic Variation , Sequence Analysis, DNA , Siberia
17.
BMC Genomics ; 12: 171, 2011 03 31.
Article in English | MEDLINE | ID: mdl-21453527

ABSTRACT

BACKGROUND: Hibernation is an adaptive strategy to survive in highly seasonal or unpredictable environments. The molecular and genetic basis of hibernation physiology in mammals has only recently been studied using large scale genomic approaches. We analyzed gene expression in the American black bear, Ursus americanus, using a custom 12,800 cDNA probe microarray to detect differences in expression that occur in heart and liver during winter hibernation in comparison to summer active animals. RESULTS: We identified 245 genes in heart and 319 genes in liver that were differentially expressed between winter and summer. The expression of 24 genes was significantly elevated during hibernation in both heart and liver. These genes are mostly involved in lipid catabolism and protein biosynthesis and include RNA binding protein motif 3 (Rbm3), which enhances protein synthesis at mildly hypothermic temperatures. Elevated expression of protein biosynthesis genes suggests induction of translation that may be related to adaptive mechanisms reducing cardiac and muscle atrophies over extended periods of low metabolism and immobility during hibernation in bears. Coordinated reduction of transcription of genes involved in amino acid catabolism suggests redirection of amino acids from catabolic pathways to protein biosynthesis. We identify common for black bears and small mammalian hibernators transcriptional changes in the liver that include induction of genes responsible for fatty acid ß oxidation and carbohydrate synthesis and depression of genes involved in lipid biosynthesis, carbohydrate catabolism, cellular respiration and detoxification pathways. CONCLUSIONS: Our findings show that modulation of gene expression during winter hibernation represents molecular mechanism of adaptation to extreme environments.


Subject(s)
Heart/physiology , Hibernation/physiology , Liver/physiology , Ursidae/genetics , Adaptation, Physiological , Animals , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation , Hibernation/genetics , Male , Oligonucleotide Array Sequence Analysis , Seasons , Ursidae/physiology
18.
J Exp Biol ; 214(Pt 8): 1300-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21430207

ABSTRACT

Hibernating arctic ground squirrels (Urocitellus parryii), overwintering in frozen soils, maintain large gradients between ambient temperature (T(a)) and body temperature (T(b)) by substantially increasing metabolic rate during torpor while maintaining a subzero T(b). We used quantitative reverse-transcription PCR (qRT-PCR) to determine how the expression of 56 metabolic genes was affected by season (active in summer vs hibernating), metabolic load during torpor (imposed by differences in T(a): +2 vs -10°C) and hibernation state (torpid vs after arousal). Compared with active ground squirrels sampled in summer, liver from hibernators showed increased expression of genes associated with fatty acid catabolism (CPT1A, FABP1 and ACAT1), ketogenesis (HMGCS2) and gluconeogenesis (PCK1) and decreased expression of genes associated with fatty acid synthesis (ACACB, SCD and ELOVL6), amino acid metabolism, the urea cycle (PAH, BCKDHA and OTC), glycolysis (PDK1 and PFKM) and lipid metabolism (ACAT2). Stage of hibernation (torpid vs aroused) had a much smaller effect, with only one gene associated with glycogen synthesis (GSY1) in liver showing consistent differences in expression levels between temperature treatments. Despite the more than eightfold increase in energetic demand associated with defending T(b) during torpor at a T(a) of -10 vs +2°C, transcript levels in liver and brown adipose tissue differed little. Our results are inconsistent with a hypothesized switch to use of non-lipid fuels when ambient temperatures drop below freezing.


Subject(s)
Adipose Tissue, Brown/physiology , Energy Metabolism/genetics , Hibernation/genetics , Liver/physiology , Sciuridae , Seasons , Temperature , Animals , Arctic Regions , Body Temperature , Gene Expression Regulation , Principal Component Analysis , Reverse Transcriptase Polymerase Chain Reaction , Sciuridae/genetics , Sciuridae/metabolism
19.
BMC Genomics ; 11: 201, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20338065

ABSTRACT

BACKGROUND: Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). RESULTS: Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. CONCLUSION: We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.


Subject(s)
Expressed Sequence Tags , Genome , Ursidae/genetics , Alaska , Alternative Splicing , Amino Acid Sequence , Animals , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation , Genome/genetics , Humans , Models, Molecular , Molecular Sequence Data , Organ Specificity , Phylogeny , Protein Structure, Tertiary , Sequence Alignment
20.
Mol Cell Proteomics ; 9(2): 313-26, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19955082

ABSTRACT

Mammalian hibernation involves complex mechanisms of metabolic reprogramming and tissue protection. Previous gene expression studies of hibernation have mainly focused on changes at the mRNA level. Large scale proteomics studies on hibernation have lagged behind largely because of the lack of an adequate protein database specific for hibernating species. We constructed a ground squirrel protein database for protein identification and used a label-free shotgun proteomics approach to analyze protein expression throughout the torpor-arousal cycle during hibernation in arctic ground squirrels (Urocitellus parryii). We identified more than 3,000 unique proteins from livers of arctic ground squirrels. Among them, 517 proteins showed significant differential expression comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 months after hibernation had ended (non-hibernating). Consistent with changes at the mRNA level shown in a previous study on the same tissue samples, proteins involved in glycolysis and fatty acid synthesis were significantly underexpressed at the protein level in both late torpid and early aroused animals compared with non-hibernating animals, whereas proteins involved in fatty acid catabolism were significantly overexpressed. On the other hand, when we compared late torpid and early aroused animals, there were discrepancies between mRNA and protein levels for a large number of genes. Proteins involved in protein translation and degradation, mRNA processing, and oxidative phosphorylation were significantly overexpressed in early aroused animals compared with late torpid animals, whereas no significant changes at the mRNA levels between these stages had been observed. Our results suggest that there is substantial post-transcriptional regulation of proteins during torpor-arousal cycles of hibernation.


Subject(s)
Hibernation/physiology , Proteomics/methods , Sciuridae/metabolism , Animals , Arctic Regions , Blotting, Western , Databases, Protein , Gene Expression Profiling , Gene Expression Regulation , Hibernation/genetics , Humans , Liver/metabolism , Proteome/genetics , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Sciuridae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...