Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(13): 5922-5931, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38456352

ABSTRACT

MXenes are a group of two-dimensional materials that are promising for many applications, including as film electrode supercapacitors. When synthesizing such materials, special attention is paid to the conditions for obtaining the MAX phase, the chemical, morphological and structural features of which determine the functional properties of the final product. In this study, the Ti3AlC2 precursor is proposed to be obtained using a technologically simple and accessible method of synthesis in molten salt. This method allows reducing the reaction temperature and creating an antioxidant atmosphere. Ti3C2Tx MXene electrode films are produced by the easily scalable blade coating method without a binder. The synthesized materials were studied by X-ray phase analysis and scanning electron microscopy. Electrochemical testing of Ti3C2Tx film electrodes was carried out in a three-electrode configuration in aqueous solutions of 1M H2SO4, 6M KOH, 1M LiOH and 1M Na2SO4 electrolytes. The maximum specific capacity value for Ti3C2Tx MXene binder-free film electrode supercapacitors is obtained in 1M H2SO4 electrolyte (480 F g-1 at a scan rate of 1 mV s-1). The simple, low-cost and scalable production technology and promising electrochemical characteristics of the Ti3C2Tx MXene binder-free film electrode make it an excellent candidate for new-generation supercapacitors.

2.
Polymers (Basel) ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257024

ABSTRACT

Three-phase polymer composites are promising materials for creating electronic device components. The qualitative and quantitative composition of such composites has a significant effect on their functional, in particular dielectric properties. In this study, ceramic filler K2Ni0.93Ti7.07O16 (KNTO) with Ag coating as conductive additive (0.5, 1.0, 2.5 wt.%) was introduced into the polyvinylidene difluoride (PVDF) polymer matrix in amounts of 7.5, 15, 22.5, and 30 vol.%. to optimize the dielectric constant and dielectric loss tangent. The filler was characterized by X-ray phase analysis, Fourier-transform infrared spectroscopy and Scanning electron microscopy methods. The dielectric constant, dielectric loss tangent, and conductivity of three-phase composites KNTO@Ag-PVDF were studied in comparison with two-phase composites KNTO-PVDF in the frequency range from 102 Hz to 106 Hz. The dielectric constant values of composites containing 7.5, 15, 22.5, and 30 vol.% filler were 12, 13, 17.4, 19.2 for pure KNTO and 13, 19, 25, 31 for KNTO@Ag filler (2.5 wt.%) at frequency 10 kHz. The dielectric loss tangent ranged from 0.111 to 0.340 at a filler content of 7.5 to 30 vol.%. A significantly enhanced balance of dielectric properties of PVDF-based composites was found with K2Ni0.93Ti7.07O16 as ceramic filler for 1 wt.% of silver. Composites KNTO@Ag(1 wt.%)-PVDF can be applied as dielectrics for passive elements of flexible electronics.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630875

ABSTRACT

Effective low-grade waste heat harvesting and its conversion into electric energy by the means of thermoelectrochemical cells (TECs) are a strong theme in the field of renewable energy investigation. Despite considerable scientific research, TECs have not yet been practically applied due to the high cost of electrode materials and low effectiveness levels. A large hypothetical Seebeck coefficient allow the harvest of the low-grade waste heat and, particularly, to use TECs for collecting human body heat. This paper demonstrates the investigation of estimated hypothetical Seebeck coefficient dependency on KOH electrolyte concentration for TECs with hollow nanostructured Ni/NiO microsphere electrodes. It proposes a thermoelectrochemical cell with power density of 1.72 W·m-2 and describes the chemistry of electrodes and near-electrode space. Also, the paper demonstrates a decrease in charge transfer resistance from 3.5 to 0.52 Ω and a decrease in capacitive behavior with increasing electrolyte concentration due to diffusion effects.

4.
Nanomaterials (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37177035

ABSTRACT

The results of experimental studies of ohmic conductivity degradation in the ensembles of nanostructured anatase bridges under a long-term effect of direct current are presented. Stochastic sets of partially conducting inter-electrode bridges consisting of close-packed anatase nanoparticles were formed by means of the seeding particles from drying aqueous suspensions on the surfaces of silica substrates with interdigital platinum electrodes. Multiple-run experiments conducted at room temperature have shown that ohmic conductivity degradation in these systems is irreversible. It is presumably due to the accumulated capture of conduction electrons by deep traps in anatase nanoparticles. The scaling analysis of voltage drops across the samples at the final stage of degradation gives a critical exponent for ohmic conductivity as ≈1.597. This value satisfactorily agrees with the reported model data for percolation systems. At an early stage of degradation, the spectral density of conduction current fluctuations observed within the frequency range of 0.01-1 Hz decreases approximately as 1/ω, while near the percolation threshold, the decreasing trend changes to ≈1/ω2. This transition is interpreted in terms of the increasing contribution of blockages and subsequent avalanche-like breakdowns of part of the local conduction channels in the bridges into electron transport near the percolation threshold.

5.
Nanomaterials (Basel) ; 13(8)2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37110921

ABSTRACT

In this study, we report the effect of intercalation of dimethyl sulfoxide (DMSO) and urea molecules into the interlayer space of Ti3C2Tx MXene on the dielectric properties of poly(vinylidene fluoride) (PVDF)/MXene polymer nanocomposites. MXenes were obtained by a simple hydrothermal method using Ti3AlC2 and a mixture of HCl and KF, and they were then intercalated with DMSO and urea molecules to improve the exfoliation of the layers. Then, nanocomposites based on a PVDF matrix loading of 5-30 wt.% MXene were fabricated by hot pressing. The powders and nanocomposites obtained were characterized by using XRD, FTIR, and SEM. The dielectric properties of the nanocomposites were studied by impedance spectroscopy in the frequency range of 102-106 Hz. As a result, the intercalation of MXene with urea molecules made it possible to increase the permittivity from 22 to 27 and to slightly decrease the dielectric loss tangent at a filler loading of 25 wt.% and a frequency of 1 kHz. The intercalation of MXene with DMSO molecules made it possible to achieve an increase in the permittivity up to 30 at a MXene loading of 25 wt.%, but the dielectric loss tangent was increased to 0.11. A discussion of the possible mechanisms of MXene intercalation influence on the dielectric properties of PVDF/Ti3C2Tx MXene nanocomposites is presented.

6.
Polymers (Basel) ; 14(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365603

ABSTRACT

New three-phase composites, destined for application as dielectrics in the manufacturing of passive elements of flexible electronics, and based on polymer (PVDF) matrix filled with powdered ceramics of the hollandite-like (KFTO(H)) structure (5.0; 7.5; 15; 30 vol.%) and carbon (MWCNT) additive (0.5; 1.0; 1.5 wt.% regarding the KFTO(H) amount), were obtained and studied by XRD, FTIR and SEM methods. Chemical composition and stoichiometric formula of the ceramic material synthesized by the sol-gel method were confirmed with the XRF analysis data. The influence of the ceramic and carbon fillers on the electrical properties of the obtained composites was investigated using impedance spectroscopy. The optimal combination of permittivity and dielectric loss values at 1 kHz (77.6 and 0.104, respectively) was found for the compositions containing K1.6Fe1.6Ti6.4O16 (30 vol.%) and MWCNTs (1.0 wt.% regarding the amount of ceramic filler).

7.
Polymers (Basel) ; 14(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235957

ABSTRACT

In this work, polymer matrix composites with the compositions PTFE/KFTO(H) and PTFE/KFTO(H)@CB and with filler volume fractions of 2.5, 5.0, 7.5, 15, and 30% (without and with carbon modification at a content of 2.5 wt.% regarding ceramic material) were produced by calendering and hot pressing and studied using FTIR, SEM, and impedance spectroscopy methods. Ceramic filler (KFTO(H)) was synthesized using the sol−gel Pechini method. Its structure was investigated and confirmed by the XRD method with following Rietveld refinement. The carbon black (CB) modification of KFTO(H) was carried out through the calcination of a mixture of ceramic and carbon materials in an argon atmosphere. Afterwards, composites producing all the components' structures weren't destroyed according to the FTIR results. The effect of carbon additive at a content of 2.5 wt.% relating to ceramic filler in the system of polymer matrix composites was shown, with permittivity increasing up to ε' = 28 with a simultaneous decrease in dielectric loss (tanδ < 0.1) at f = 103 Hz for composites of PTFE/KFTO(H)@CB (30 vol.%).

8.
Polymers (Basel) ; 14(3)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35160438

ABSTRACT

Polymer matrix composites based on ED-20 epoxy resin, hollandite K1.6(Ni0.8Ti7.2)O16 and carbon nanotubes with a variable content of 0.107; 0.213 and 0.425 vol.% were obtained for the first time. Initial components and composites produced were characterized by XRD, XRA, FTIR, SEM and Raman spectroscopy. The dielectric properties of composite materials were measured by impedance spectroscopy and determined by the volume ratio of the composite components, primarily by the concentration of CNTs. At a CNT content of 0.213 vol.% (before percolation threshold), the maximum synergistic effect of carbon and ceramic fillers on the dielectric properties of a composite based on the epoxy resin was found. Three-phase composites based on epoxy resin, with a maximum permittivity at a minimum dielectric loss tangent, are promising materials for elements of an electronic component base.

9.
Polymers (Basel) ; 13(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205969

ABSTRACT

N-vinylpyrrolidone-co-allylamine copolymers (VP-co-AA) containing iminodiacetic (IDA) chelation units were prepared in the range of molecular masses of the copolymers from 9000 to 30,000 Da depending on polymerization conditions. Non-radioactive organometallic species Re(CO)3+ were introduced into polymeric carriers under mild conditions; the prepared metal-polymeric complexes were characterized by IR, NMR, ESI-MS and HPLC. IR spectra data confirmed the coordination of M(CO)3+ moiety to the polymeric backbone via IDA chelation unit (appearance of characteristic fac-M(CO)3+ vibrations (2005, 1890 cm-1), as well as the appearance of group of signals in 1H NMR spectra, corresponding to those inequivalent to methylene protons CH2COO (dd, 4.2 ppm), coordinated to metal ions. The optimal conditions for labeling the PVP-co-AA-IDA copolymers with radioactive 99mTc(CO)3+ species were determined. The radiochemical yields reached 97%. The obtained radiolabeled polymers were stable in blood serum for 3 h. In vivo distribution experiments in intact animals showed the high primary accumulation of technetium-99m MPC (MM = 15,000 Da) in blood with subsequent excretion via the urinary tract.

10.
Polymers (Basel) ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35012128

ABSTRACT

Water-soluble complexes of N-vinylpyrrolidone/N-vinylamine copolymers with lactones of D-glucuronic acid were obtained and characterized by chromatographic, spectral, and hydrodynamic methods. The complexes efficiently inhibited the enzyme ß-glucuronidase that causes the appearance of bladder tumors. The products demonstrated prolonged action and were stable during storage.

11.
Molecules ; 25(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066394

ABSTRACT

Dithiocarbamate (DTC) derivatives of N-vinylpyrrolidone-N-vinylamine (VP-VA) copolymers were synthesized via reaction between the copolymers and carbon disulfide in alkaline medium; molecular masses of the products were 12 and 29 kDa; the VP:VDTC ratios were 94:6 and 83:17 mol.%. Complexation between the obtained DTC derivatives and metal ions (indium and gallium) was investigated. It was demonstrated that metal-DTC ligand complexes with 1:3 ratio between components were formed. Gallium metal-polymer complexes (MPC) were unstable in solution. Individual indium MPC were isolated and characterized by spectral and chromatographic methods. Unlike similar gallium MPC, they appeared to be stable in histidine challenge reaction.


Subject(s)
Chelating Agents/chemistry , Gallium/chemistry , Indium/chemistry , Polymers/chemistry , Pyrrolidinones/chemistry , Chromatography, Gel , Dimethyldithiocarbamate/analogs & derivatives , Dimethyldithiocarbamate/chemistry , Dynamic Light Scattering , Histidine/chemistry , Polymers/chemical synthesis , Solubility , Spectrophotometry, Infrared , Spectrophotometry, Ultraviolet , Thiocarbamates/chemistry , Water
12.
Data Brief ; 31: 105770, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32548220

ABSTRACT

Low-grade waste heat harvesting and conversion into electric energy is an important way of renewable energy development and thermo-electrochemical cells are promising devices to solve this problem. In this paper, we report original data on the current density and maximum output power dependents on voltage of the thermos-cells with nickel hollow microspheres electrodes and different electrolyte concentration (from 0.1 to 3.0 mol/l)which exhibit excellent hypothetical Seebeck coefficient and accordingly high open-circuit voltage values at low source temperature. The composition, microstructure and morphology of the hollow nickel microspheres based electrodes are included here. Because of the low cost of nickel based thermo-cells could be commercially feasible for harvesting low-quality thermal energy, in this connection, the raw data of measurements of their properties are given here. The data is related to "High Seebeck coefficient thermo-electrochemical cell using nickel hollow microspheres electrodes", Burmistrov et al., Renewable Energy, 2020 [1].

13.
Inorg Chem ; 58(7): 4275-4288, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30888157

ABSTRACT

Electrical conduction and oxygen diffusion mobility in the bixbyite ( Ia3̅) and rhombohedral ( R3̅) polymorphs of the Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ, δ1, δ2; δ1 > δ2) heavy lanthanide molybdates, belonging to new, previously unexplored classes of potential mixed (ionic-electronic) conductors, have been studied in the range of 200-900 °C. The oxygen self-diffusion coefficient in bixbyite ( Ia3̅) Yb6MoO12-δ phase estimated by the temperature-programmed heteroexchange with C18O2 was shown to be much higher than that for rhombohedral ( R3̅) RI (with large oxygen deficiency) and ( R3̅) RII (with small oxygen deficiency) Ln6MoO12-Δ (Ln = Tm, Yb; Δ = δ1; δ1 > δ2) oxides. According to the activation energy for total conduction in ambient air, 0.99, 0.93, and 1.01 eV in Er6MoO12-δ, Tm6MoO12-δ, and Yb6MoO12-δ bixbyites, respectively, oxygen ion conductivity prevails in the range ∼200-500 °C. Oxygen mobility data for the rhombohedral Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) phases RI and RII indicate that the oxygen in these phases exhibits mobility at much higher temperatures, such as those above 600-700 °C. Accordingly, below 600-700 °C they have predominantly electronic conductivity. As shown by total conductivity study of Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites ( Ia3̅) and rhombohedral phases Ln6MoO12-Δ (Ln = Er, Tm, Yb; Δ = δ1, δ2) ( R3̅) in dry and wet air, the proton conductivity contribution exists only in Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites up to 450-600 °C and decreases with a decreasing of the lanthanide ionic radius. The obtained data on the mobility of oxygen and the presence of proton contribution in bixbyites in the 300-600 °C temperature range make it possible to confirm unequivocally that Ln6MoO12-δ (Ln = Er, Tm, Yb) bixbyites are mixed electron-proton conductors at these temperatures.

14.
J Labelled Comp Radiopharm ; 56(14): 700-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24339008

ABSTRACT

Myocardial perfusion imaging is an established Nuclear Medicine investigation. Current myocardial perfusion imaging agents sestamibi and tetrofosmin have number of drawbacks; low heart uptake coupled with uptake into the surrounding tissues leads to a poorer image quality. There is a need for continued research into designing and evaluating potentially superior myocardial imaging agents. Tri-carbonyl-technetium and rhenium complexes were prepared by combination with mono-dentate and bi-dentate ligands. Complexes were characterized by HPLC, MAS, nuclear magnetic resonance, infrared, single-crystal X-ray diffraction and partition coefficient determinations. (99m) Tc(CO)3 complexes were administered intravenously to Sprague Dawley rats, and tissue distribution studies were carried out at 15 min and 1 h p.i. Radiochemical purity was assessed as >90%. 1-10-phenanthroline, 2,2'-bipyridine and imidazole complexes gave the highest heart uptake. The percentage injected dose per gram (n = 3) at 1 h for 1-10-phenanthroline/imidazole was blood 0.21 ± 0.01, heart 1.12 ± 0.11, kidney 3.61 ± 1.13, liver 0.62 ± 0.06, lung 0.28 ± 0.12, spleen 0.24 ± 0.05, small intestine contents 1.87 ± 0.92; and for 2,2'-bipyridine /imidazole was blood 0.23 ± 0.02, heart 1.07 ± 0.18, kidney 3.31 ± 1.28, liver 0.56 ± 0.09, lung 0.14 ± 0.02, spleen 0.2 ± 0.1, small intestine content 1.05 ± 0.48. Further investigation to evaluate more complexes based on 1,10-phenanthroline, 2,2'-bipyridine and imidazole derivatives could potentially lead to agents with an increased heart uptake and faster clearance from the liver and gastrointestinal tract.


Subject(s)
Myocardial Perfusion Imaging , Organotechnetium Compounds/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Technetium/chemistry , Animals , Drug Evaluation, Preclinical , Heart/diagnostic imaging , Organotechnetium Compounds/chemical synthesis , Radiopharmaceuticals/chemical synthesis , Rats , Rats, Sprague-Dawley , Rhenium/chemistry , Rhenium/pharmacokinetics , Technetium/pharmacokinetics , Tissue Distribution
15.
Nucl Med Biol ; 36(1): 73-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19181271

ABSTRACT

INTRODUCTION: The use of (99m)Tc-macroggregated albumin for lung perfusion imaging is well established in nuclear medicine. However, there have been safety concerns over the use of blood-derived products because of potential contamination by infective agents, for example, Variant Creutzfeldt Jakob Disease. Preliminary work has indicated that Tc(CO)(5)I is primarily taken up in the lungs following intravenous administration. The aim of this study was to evaluate the biodistribution and pharmacokinetics of (99m)Tc(CO)(5)I and its potential as a lung perfusion agent. METHODS: (99m)Tc(CO)(5)I was synthesized by carbonylation of (99m)TcO(4-) at 160 atm of CO at 170 degrees C in the presence of HI for 40 min. Radiochemical purity was determined by HPLC using (99)Tc(CO)(5)I as a reference. (99m)Tc(CO)(5)I was administered by ear-vein injection to three chinchilla rabbits, and dynamic images were acquired using a gamma camera (Siemens E-cam) over 20 min. Imaging studies were also performed with (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) and (99m)TcO(4-) for comparison. (99m)Tc(CO)(5)I was administered intravenously to Sprague-Dawley rats, and tissue distribution studies were obtained at 15 min and 1 h postinjection. Comparative studies were performed using (99m)Tc-MAA. RESULTS: Radiochemical purity, assessed by HPLC, was 98%. The retention time was similar to that of (99)Tc(CO)(5)I. The dynamic images showed that 70% of (99m)Tc(CO)(5)I appeared promptly in the lungs and remained constant for at least 20 min. In contrast, (99m)TcO(4-) rapidly washed out of the lungs after administration. As expected (99m)Tc-MAA showed 90% lung accumulation. The percentage of injected dose per gram of organ +/-S.D. at 1 h for (99m)Tc(CO)(5)I was as follows: blood, 0.22+/-0.02; lung, 12.8+/-2.87; liver, 0.8+/-0.15; heart, 0.15+/-0.01; kidney, 0.47+/-0.08. The percentage of injected dose per organ +/-S.D. at 1 h was as follows: lung, 22.47+/-2.31; liver, 10.53+/-1.8; heart, 0.18+/-0.01; kidney, 1.2+/-0.17. Tissue distribution studies with (99m)Tc-MAA showed 100% lung uptake. CONCLUSION: (99m)Tc(CO)(5)I was synthesized with a high radiochemical purity and showed a high accumulation in the lungs. Further work on the mechanism and optimization of lung uptake of (99m)Tc-pentacarbonyl complexes is warranted.


Subject(s)
Lung/diagnostic imaging , Perfusion Imaging/methods , Technetium Compounds , Animals , Histidine/metabolism , Humans , Rabbits , Radiochemistry , Rats , Technetium Compounds/blood , Technetium Compounds/chemistry , Technetium Compounds/pharmacokinetics , Time Factors , Tissue Distribution , Tomography, Emission-Computed, Single-Photon , Whole Body Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...