Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Anal Chem ; 93(42): 14280-14286, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34637277

ABSTRACT

The discovery of sulfite-stabilized anodic current of hydroquinone (HQ) at high pH was used to develop two new methods for measuring the activity of the key biomarker alkaline phosphatase (ALP). Both approaches relied on the monitoring of ALP-triggered release of HQ from a substrate hydroquinone diphosphate (HQDP) into a pH 10.00 solution. One detected the released HQ via the internally calibrated electrochemical continuous enzyme assay (ICECEA) at a glassy carbon (GC) electrode with no sample incubation. The other used sample incubation with HQDP and quantified the released HQ via a coulometric assay at a commercial glucose test strip (GTS). The assay solution was optimized by investigating the ALP/HQDP/HQ system at a GC electrode. The ICECEA revealed high affinity of ALP for HQDP (Kmapp, 87 µM; Vmax, 0.36 µM min-1) and detected ALP down to 0.022 U L-1. At GTS, ALP was detected down to 0.064 U L-1 in a 1 µL sample of human serum after a 20 min incubation at room temperature. The linear range (R2, 0.994) extended at least up to 1.7 U L-1 ALP, which covered more than the clinical range for ALP in serum. The interferences from the sample matrix including those from indigenous glucose were eliminated using a charge difference ΔQ (=Qtotal - Qsample matrix) as a signal for ALP. Both advances proposed here are direct (no auxiliary enzymes or labels required), accurate (98 ± 3% ALP signal recovery), and precise (relative standard deviation (RSD), <7%). The HQDP-GTS-based assay advances the analysis of ALP activity in microsized real-life samples.


Subject(s)
Alkaline Phosphatase , Enzyme Assays , Biological Assay , Carbon , Electrodes , Humans
2.
Talanta ; 235: 122730, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517598

ABSTRACT

The enzyme sorbitol dehydrogenase (SDH) is an emerging biomarker of drug-induced liver injury (DILI). This paper introduces determination of SDH in microliter samples of human serum at commercial glucose test strips. The determination relies on the oxidation of NADH cofactor, which is used by SDH reacting with its substrates. The strips could detect NADH down to 5.0 µM (5 pmol), which was two orders of magnitude better than the prior relevant limit of detection. The concentration of cofactors (NADH, NAD+) and substrates (fructose, sorbitol) for SDH determination at a strip was optimized via internally-calibrated amperometric assays at a chitosan/nitrogen-doped carbon nanotube electrode. Such an electrode provided reliable assay data for over 3 months with no need for its reactivation. The assays yielded kinetic parameters Km and kcat and demonstrated higher apparent affinity of SDH for NADH and fructose than NAD+ and sorbitol. The glucose strips detected SDH down to 98 pM (98 amol) in buffers and 200 pM (200 amol) in human serum after 20-min incubation with an optimized (c ≥ 10Km) mixture of cofactor + substrate. The charge ΔQ flowing through a strip was linear (R2, 0.994) up to 6.0 nM SDH, which covered enzyme's clinical range. The ΔQ was selective for SDH, independent of sample matrix, and free of interferences from indigenous glucose. The use of glucose strip as an electrolytic microcell to detect picomoles of NADH and attomoles of SDH is a step toward a point-of-care monitoring of DILI.


Subject(s)
L-Iditol 2-Dehydrogenase , Sorbitol , Fructose , Glucose , Humans , Kinetics , L-Iditol 2-Dehydrogenase/metabolism , NAD
3.
Biosens Bioelectron ; 163: 112260, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32568690

ABSTRACT

The case study of four FAD-dependent oxidase enzymes is presented in the context of the often-claimed direct electron transfer (DET) to glucose oxidase at carbon nanotubes (CNT). The selected enzymes included d-amino acid (AAOx), alcohol (AOx), pyranose (PyOx), and choline oxidase (ChOx). Each enzyme (E) was mixed with chitosan and CNT (either multi- or single-walled) to form a CNT/E film on the surface of glassy carbon electrode. All eight CNT/E films displayed redox activity depicted by voltammetric current peaks near -0.4 V. However, no DET was observed for any of the films as indicated by the absence of expected substrate- and oxygen-induced asymmetry in the anodic-to-cathodic charge ratio. The peaks are suggested to be due to the redox of either a dissociated FAD cofactor, in the case of AAOx and AOx, or denatured enzyme in the case of PyOx and ChOx. The amperometric assays of the films revealed the lowering of enzymatic activity of all four oxidases by CNT. The results are consistent with the hypothesis of oxidase molecules displaying a spectrum of enzymatic activity in CNT/E films ranging from voltammetrically untraceable (for molecules adsorbed on CNT) to amperometrically measurable (for molecules remote from CNT). The kinetic studies showed that enzyme molecules with no net charge leached at the slowest rate from CNT/E films. This work adds to a growing number of reports challenging the fallacy of DET to FAD-dependent native oxidases.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Electrodes , Electrons , Kinetics , Oxidoreductases
4.
ACS Sens ; 5(2): 535-540, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32036647

ABSTRACT

The discovery of infection enzyme leukocyte esterase (LE) hydrolyzing a mitochondrial substrate methyl pyruvate (MP) was explored in the development of electroanalytical methods for LE in human biofluids. The LE + MP reaction was coupled with alcohol oxidase to produce hydrogen peroxide, which was then reduced at a nitrogen-doped carbon nanotube electrode at -0.20 V, yielding current proportional to the LE content in a sample. The kinetic assays revealed a fast turnover (kcat = 15 s-1) and high specificity constant (kcatKm-1 = 2.3 × 106 M-1 s-1) for the LE-triggered hydrolysis of MP. The analytical assays were short (5 min) and the quantified LE was in the clinically relevant range of 22-300 µg L-1 (R2, 0.985). The immuno-electroanalysis could detect the picomole quantity of LE and yielded linear calibration plots up to 150 µg L-1 of LE with the same slope regardless of the sample matrix (urine, saliva, and phosphate buffer). The spike-and-recovery experiments displayed an LE recovery of 99-104%. The amperometric immunoassay of LE was less laborious than traditional enzyme-linked immunosorbent assay (ELISA) for LE and reduced the required sample incubation time from 4 h (sandwich ELISA) to 30 min (immuno-electroanalysis). The proposed combination of immunosorption with internally calibrated amperometry can also be used for a selective determination of other enzymes, which form enzymatically active immune complexes.


Subject(s)
Electrochemical Techniques/methods , Pyruvates/chemistry , Humans , Pyruvates/analysis
5.
Anal Chem ; 92(5): 3860-3866, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32040916

ABSTRACT

The four glucosyl esters were synthesized and tested for the determination of infection enzyme leukocyte esterase (LE) in human synovial (joint) fluid and urine. The esters acted as LE substrates releasing glucose in a direct proportion to the activity of LE in a sample. The freed glucose was then detected by a coupled-enzyme assay at either a nitrogen-doped carbon nanotube (N-CNT) electrode or a commercial glucose test strip. The assays at the N-CNT electrode detected LE down to 0.81 nM (25 µg L-1) and showed the fastest kinetics (2.1 × 105 M-1 s-1) for esters with the least crowded space around their carbonyl group. When used with glucose strips, the esters discerned clinically relevant levels of LE up to at least 26 nM (800 µg L-1) in the microliter-sized samples of bodily fluids. The reading of glucose strips with a potentiostat, instead of a personal glucose meter (blood glucometer), shortened the time of required sample incubation from 3 h to 5 min. Correcting the signal of incubated sample for that of original sample eliminated matrix effects and accounted for the presence of native glucose. The new esters have a potential to extend the use of glucose strips (already used by millions for diabetes monitoring) to the quantification of the severity of urinary tract and periprosthetic joint infections.


Subject(s)
Carboxylic Ester Hydrolases/analysis , Electrochemical Techniques/methods , Synovial Fluid/enzymology , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/urine , Electrochemical Techniques/instrumentation , Electrodes , Glucose/chemistry , Glucose/metabolism , Humans , Kinetics , Limit of Detection , Nanotubes, Carbon/chemistry , Nitrogen/chemistry
6.
Anal Chem ; 91(4): 3163-3169, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30689356

ABSTRACT

Strategies to detect and characterize myeloperoxidase (MPO) are needed, given that this "split personality" enzyme kills harmful microorganisms but also damages a host tissue. Here, we describe electrochemical approaches to measure MPO by using the pseudohalogenation (MPO/SCN-/H2O2) and catalase-like (MPO/H2O2) cycles. Their kinetics were determined by monitoring the consumption of H2O2 with a nitrogen-doped carbon nanotubes (N-CNT) electrode, which could detect 0.50 µM H2O2 at -0.20 V. The unique design of internally calibrated electrochemical continuous enzyme assay (ICECEA) and electrode stability allowed use of one N-CNT electrode for over half a year to reliably determine MPO. The kinetic measurements showed that (a) SCN- did not affect the affinity of MPO for H2O2, (b) catalase-like cycle was slower, and (c) MPO retained enzymatically active conformation after complexation with its antibody Ab both in a solution and on the surface of an antibody dipstick (d/Ab). The homogeneous assays could detect 5.2 µg L-1 MPO (35 pM) via a faster cycle. The heterogeneous immunoassays with the capture of MPO on d/Ab could detect 60 µg L-1, which was suitable for the accurate detection of MPO in human saliva (101% recovery). Replacing a detection antibody of ELISA with ICECEA as a signal transducer for immunoassays offers a rapid method for the selective determination of enzymes; for example, time of MPO quantification was cut from 3-4 h (sandwich ELISA) to ∼20 min (ICECEA-dipstick).


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Enzyme-Linked Immunosorbent Assay , Hydrogen Peroxide/analysis , Peroxidase/analysis , Thiocyanates/analysis , Humans , Hydrogen Peroxide/metabolism , Kinetics , Peroxidase/metabolism , Saliva/enzymology , Thiocyanates/metabolism
7.
Chembiochem ; 19(14): 1488-1491, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29679431

ABSTRACT

We introduce a new class of substrates (compounds I-III) for leukocyte esterase (LE) that react with LE yielding anodic current in direct proportion to LE activity. The kinetic constants Km and kcat for the enzymatic reactions were determined by amperometry at a glassy carbon electrode. The binding affinity of I-III for LE was two orders of magnitude better than that of existing optical LE substrates. The specificity constant kcat /Km was equal to 2.7, 3.8, and 5.8×105 m-1 s-1 for compounds containing the pyridine (I), methoxypyridine (II), and (methoxycarbonyl)pyridine (III), respectively, thus showing an increase in catalytic efficiency in this order. Compound III had the lowest octanol/water partition coefficient (log p=0.33) along with the highest topological surface area (tPSA=222 Å2 ) and the best aqueous solubility (4.0 mg mL-1 ). The average enzymatic activity of LE released from a single leukocyte was equal to 4.5 nU when measured with compound III.

8.
Anal Chem ; 89(14): 7781-7787, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28608672

ABSTRACT

The ester 4-((tosyl-l-alanyl)oxy)phenyl tosyl-l-alaninate (TAPTA) was synthesized and tested as a substrate for leukocyte esterase (LE), an enzyme produced by leukocytes (white blood cells). In the presence of LE, TAPTA released a redox-active fragment whose oxidation at an electrode provided a direct numerical measure of LE activity. The assays showed that LE recognized TAPTA as its substrate with the Michaelis constant Km and Imax equal to 0.24 mM and 0.13 mA cm-1, respectively. The esterolytic activity of leukocyte suspensions was determined by using the internally calibrated electrochemical continuous enzyme assay (ICECEA). One activity unit (U) of LE catalyzed the hydrolysis of 1.0 µmol of TAPTA per minute in a pH 7.40 phosphate buffer saline solution containing 10% dimethyl sulfoxide (DMSO) at 21 °C. The measured units were directly proportional to the number of leukocytes in the range of 0.028-4.2 U L-1 (9-690 µg L-1 LE protein). One white blood cell displayed the average esterolytic activity of 0.86 and 1.4 nU when the ultrasonic and chemical cytolysis were used, respectively. The ICECEA is an electrochemical alternative to optical assays for the determination of LE activity as an inflammatory biomarker and proxy for the presence of leukocytes.


Subject(s)
Alanine/metabolism , Carboxylic Ester Hydrolases/metabolism , Electrochemical Techniques , Enzyme Assays , Esters/metabolism , Leukocytes/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Biocatalysis , Carboxylic Ester Hydrolases/chemistry , Esters/chemistry , Humans , Hydrolysis , Leukocytes/metabolism , Molecular Structure , Substrate Specificity
9.
Analyst ; 141(8): 2405-11, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-26937496

ABSTRACT

The oxidation of glucagon, which is one of the key hormones in glucose homeostasis, was studied at electrodes modified with carbon nanotubes (CNT) that were dispersed in a polysaccharide adhesive chitosan (CHIT). Such electrodes displayed improved resistance to fouling, which allowed for the investigation of both the electrolysis/mass spectrometry and electroanalysis of glucagon. The off-line electrospray ionization and tandem mass spectrometric analyses showed that the -4 Da mass change to glucagon upon electrolysis at CNT was due to the electrooxidation of its tryptophan (W25) and dityrosine (Y10, Y13) residues. The methionine residue of glucagon did not contribute to its oxidation. The amperometric determination of glucagon yielded the limit of detection equal to ∼20 nM (E = 0.800 V, pH 7.40, S/N = 3), sensitivity of 0.46 A M(-1) cm(-2), linear dynamic range up to 2.0 µM (R(2) = 0.998), response time <5 s, and good signal stability. Free tryptophan and tyrosine yielded comparable analytical figures of merit. The direct amperometric determination of unlabeled glucagon at CHIT-CNT electrodes is the first example of a rapid alternative to the complex analytical assays of this peptide.


Subject(s)
Electrochemistry/methods , Glucagon/chemistry , Nanotubes, Carbon/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Chitosan/chemistry , Electrochemistry/instrumentation , Electrodes , Mass Spectrometry , Oxidation-Reduction
10.
Electrochim Acta ; 218: 8-14, 2016 Nov 10.
Article in English | MEDLINE | ID: mdl-28479607

ABSTRACT

The shape-dependent activity of gold nanoparticles (AuNP) was studied by testing them as electrocatalysts for the notoriously slow non-enzymatic oxidation of glucose in neutral solutions. The AuNP of spherical and irregular (including polyhedral) morphologies were synthesized and attached to glassy carbon electrodes with chitosan. Voltammetric and mass spectrometric studies showed that the irregular AuNP were more catalytically active toward the oxidation of glucose to gluconic acid. No obvious differences between both morphologies were found based on their X-ray diffraction patterns and HRTEM images suggesting that the crystallographic orientation alone did not account for their catalytic properties. While both morphologies contain the (111) crystallographic planes that are catalytic toward glucose oxidation, the better activity of irregular AuNP was ascribed to a higher surface density of incipient gold oxide acting as a fast redox mediator for glucose oxidation. Supporting this, the AuNP of both morphologies oxidized glucose after their anodic activation, although not to the same extent. The amperometric (0.30 V) determination of glucose at electrodes made of irregular AuNP yielded a wide linear calibration plot (0.20-110 mM; R2, 0.998), sensitivity of 66 µA M-1 cm-2, limit of detection of 100 µM (S/N, 3), and a response time below 5 s. The advantage of low-cost irregular AuNP over macro gold is that they are catalytic toward glucose oxidation without any need for prior activation.

11.
Anal Chem ; 86(18): 9330-4, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25180617

ABSTRACT

The recently developed internally calibrated electrochemical continuous enzyme assay (ICECEA) has proved to work well for single-enzyme systems. In the present work, its relevance to more challenging coupled-enzyme measurements was investigated by using a model enzyme pair comprising aspartate transaminase (AST) and malic dehydrogenase. The ICECEA was performed at an electrode modified with carbon nanotubes (CNTs), which were dispersed in a polysaccharide chitosan that acted as an adhesive. The 7 min assay required a 100 µL sample and relied on an AST-free calibration. It had a limit of detection equal to 5.0 pM AST (0.10 U L(-1)) with no need for the incubation period. Its linear range extended up to 3500 pM (70 U L(-1)). Perhaps the most promising was the fact that the assay and its calibration could be performed in the same solution even though the composition of the assay solution for the coupled-enzyme assays is typically more complex than that for the single-enzyme assays. This and the fast electrode kinetics of the signal transducing reaction of nicotinamide adenine dinucleotide at CNTs accounted for the low limit of detection. The unique shape of the ICECEA amperogram allowed for the selective determination of AST in the complex matrix of serum samples containing redox active potentially interfering species. Given these advantages, the prospects for the ICECEA in the development of other coupled-enzyme assays were also discussed.


Subject(s)
Electrochemical Techniques , Enzyme Assays , Nanotubes, Carbon/chemistry , Aspartate Aminotransferases/metabolism , Chitosan/chemistry , Electrodes , Hydrogen-Ion Concentration , Kinetics , Malate Dehydrogenase/metabolism , NAD/chemistry
12.
Anal Chem ; 86(1): 752-7, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24274759

ABSTRACT

The signal transduction and enzyme activity were investigated in biosensors based on the glucose oxidase (GOx) and carbon nanotubes (CNT) embedded in a bioadhesive film of chitosan (CHIT). The voltammetric studies showed that, regardless of CHIT matrix, the GOx adsorbed on CNT yielding a pair of surface-confined current peaks at -0.48 V. The anodic peak did not increase in the presence of glucose in an O2-free solution indicating the lack of direct electron transfer (DET) between the enzymatically active GOx and CNT. The voltammetric peaks were due to the redox of enzyme cofactor flavin adenine dinucleotide (FAD), which was not the part of active enzyme. The presented data suggest that DET may not be happening for any type of GOx/CNT-based sensor. The biosensor was sensitive to glucose in air-equilibrated solutions indicating the O2-mediated enzymatic oxidation of glucose. The signal transduction relied on the net drop in a biosensor current that was caused by a decrease in a 4-e(-) O2 reduction current and an increase in a 2-e(-) H2O2 reduction current. The enzyme assays showed that CNT nearly doubled the retention of GOx in a biosensor while decreasing the average enzymatic activity of retained enzyme by a factor of 4-5. Such inhibition should be considered when using a protein-assisted solubilization of CNT in water for biomedical applications. The proposed analytical protocols can be also applied to study the effects of nanoparticles on proteins in assessing the health risks associated with the use of nanomaterials.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Electron Transport , Glucose Oxidase/chemistry , Nanotubes, Carbon/chemistry , Electron Transport/physiology , Enzyme Activation
13.
Anal Chem ; 85(21): 10573-80, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24099638

ABSTRACT

A unique mode of current amplification was investigated in reagentless biosensors based on the clinically significant enzymes including alcohol dehydrogenase, glucose 6-phosphate dehydrogenase, glycerol 3-phosphate dehydrogenase, and glucose oxidase. The biosensors were designed by sandwiching the enzyme-polymer film between an electrode and Nafion film. In particular, each enzyme and its cofactor were covalently attached to the chains of polysaccharide chitosan and mixed with carbon nanotubes on the electrode surface. The coating of such biosensors with Nafion resulted in the current increase by up to 1000%, depending on the enzyme. The results were analyzed considering the interplay between the enzyme activity-pH profiles and the Nafion-induced pH increase in the underlying chitosan film. The data were collected by using the rapid (<5 min) amperometric enzyme assays and pH-sensitive iridium oxide films. The increase in the biosensor current was attributed to the pH-driven increase in the enzyme activity inside the two-film interface. Such signal amplification should also be feasible in other biosensors based on the polyelectrolytes and sandwiched enzymes providing that a proper match is made between the enzyme activity-pH profiles and the pH of buffer solutions.


Subject(s)
Biosensing Techniques , Electrochemistry/instrumentation , Electrodes , Hydrogen-Ion Concentration , Indicators and Reagents
14.
Anal Chem ; 85(12): 6026-32, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23697336

ABSTRACT

The internally calibrated electrochemical continuous enzyme assay (ICECEA, patent pending) was developed for the fast determination of enzyme activity unit (U). The assay depends on the integration of enzyme-free preassay calibration with the actual enzyme assay in one continuous experiment. Such integration resulted in a uniquely shaped amperometric trace that allowed for the selective picomolar determination of redox enzymes. The ICECEA worked because the preassay calibration did not interfere with the enzyme assay allowing both measurements to be performed in succession in the same solution and at the same electrode. The method displayed a good accuracy (relative error, <3%) and precision (relative standard deviation (RSD), <3%) when tested with different working electrodes (carbon nanotubes/chitosan, glassy carbon, platinum) and enzymes (alcohol dehydrogenase, ADH; lactate dehydrogenase, LDH; xanthine oxidase, XOx; glucose oxidase, GOx). The limit of detection for the ADH, LDH, XOx, and GOx was equal to 0.18, 0.14, 0.0031, and 0.11 U L(-1) (or 4.2, 0.72, 89, and 6.0 pM), respectively. The simplicity, reliability, and short analysis time make the ICECEA competitive with the optical enzyme assays currently in use.


Subject(s)
Electrochemical Techniques/methods , Enzymes, Immobilized/chemistry , Animals , Calibration , Cattle , Rabbits , Time Factors
15.
Anal Chem ; 85(2): 1208-14, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23244040

ABSTRACT

The redox active nanoparticles were developed by covalently attaching redox dye Azure C (AZU) to commercial silica nanoparticles (SN) via the silylated amine and glutaric dialdehyde links. The SN-AZU nanoparticles were studied as redox mediators for the oxidation of reduced ß-nicotinamide adenine dinucleotide (NADH) in two polymeric films. The first film (F1) was composed of SN-AZU, carbon nanotubes, and cationic polyelectrolyte chitosan. The second film (F2) contained also added enzyme glucose dehydrogenase and its cofactor ß-nicotinamide adenine dinucleotide (NAD(+)). The films F1 and F2 were cast on the glassy carbon electrodes, covered with an anionic polyelectrolyte Nafion, and their electrochemical properties were probed with NADH and glucose, respectively, using voltammetry, amperometry, and potentiometry. The Nafion overcoat reduced the sensitivity of F1/Nafion film electrodes to NADH by >98%. In contrast, depending on the concentration of Nafion, the sensitivity of the F2/Nafion film electrodes (reagentless biosensors) to glucose increased by up to 340%. The amplification of glucose signal was ascribed to the Donnan exclusion and ensuing Nafion-gated ionic fluxes, which enhanced enzyme activity in films F2. The proposed model predicts that such signal amplification should be also feasible in the case of other enzyme-based biosensors.


Subject(s)
Azure Stains/chemistry , Electrochemical Techniques , Glucose 1-Dehydrogenase/chemistry , Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Electrolytes/chemistry , Glucose 1-Dehydrogenase/metabolism , Molecular Structure , Oxidation-Reduction , Surface Properties
16.
Electroanalysis ; 23(10): 2357-2363, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22735259

ABSTRACT

The amperometric glutamate biosensor based on screen-printed electrodes containing carbon nanotubes (CNT), and its integration in a flow injection analysis system, is described herein. The sensor was fabricated by simply adsorbing enzyme glutamate oxidase (GlutOx) on a commercial substrate containing multi-wall CNT. The resulting device displayed excellent electroanalytical properties toward the determination of L-glutamate in a wide linear range (0.01-10 µM) with low detection limit (10 nM, S/N≥3), fast response time (≤5 s), and good operational and long-term stability. The CNT modified screen-printed electrodes have a potential to be of general interest for designing of electrochemical sensors and biosensors.

17.
Anal Chem ; 82(4): 1299-304, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20088562

ABSTRACT

The relationship between the state of the surface of carbon nanotubes (CNTs) and their electrochemical activity was investigated using the enzyme cofactor dihydronicotinamide adenine dinucleotide (NADH) as a redox probe. The boiling of CNTs in water, while nondestructive, activated them toward the oxidation of NADH, as indicated by a shift in the anodic peak potential of NADH (E(NADH)) from 0.4 V to 0.0 V. The shift in E(NADH) was due to the redox mediation of NADH oxidation by traces of quinone species that were formed on the surface of treated CNTs. The harsher treatment that was comprised of microwaving CNTs in concentrated nitric acid had a similar effect on the E(NADH), and, additionally, it increased the anodic peak current of NADH. The latter correlated with the formation of defects on the surface of acid-microwaved CNTs, as indicated by their Raman spectra. The increase in current was discussed, considering the role of surface mediators on the buckled graphene sheets of acid-microwaved CNTs. The other carbon allotropes, including the edge-plane pyrolytic graphite, graphite powder, and glassy carbon, did not display a comparable activation toward the oxidation of NADH.


Subject(s)
NAD/chemistry , Nanotubes, Carbon/chemistry , Carbon/chemistry , Electrochemistry , Glass/chemistry , Graphite/chemistry , Hot Temperature , Microscopy , Oxidation-Reduction , Pressure , Spectrum Analysis , Water
18.
Anal Chem ; 79(6): 2446-50, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17298031

ABSTRACT

Enzyme-based reagentless biosensors were developed using the model system of glucose dehydrogenase (GDH) and its nicotinamide adenine dinucleotide cofactor (NAD+). The biosensors were prepared following an approach similar to the concept of molecular imprinting. To this end, the N1-carboxymethyl-NAD+ species were covalently attached to polyamino-saccharide chains of chitosan (CHIT) and allowed to interact with GDH in an aqueous solution. The bioaffinity interactions between the NAD+ and GDH were secured by cross-linking the system with the glutaric dialdehyde (GDI)-modified CHIT. Electron conductive films of such CHIT-NAD+-GDH-GDI-CHIT macrocomplexes (MC) were prepared on glassy carbon (GC) electrodes by adding carbon nanotubes (CNT) and evaporating water. Electrochemical analysis of the GC/CNT-MC electrodes revealed that, in contrast to the oxidase-based electrodes, they acted as oxygen-independent reagentless biosensors. The application of Nafion to such biosensors predictably improved their selectivity and, unexpectedly, enhanced their sensitivity by an order of magnitude.


Subject(s)
Biosensing Techniques/methods , Enzymes, Immobilized/metabolism , NAD/metabolism , Oxidoreductases/metabolism , Chitosan/metabolism , Electrochemistry , Electrodes , Glucose/analysis , Glucose/metabolism , Mass Spectrometry , Molecular Structure , Sensitivity and Specificity
19.
Inorg Chem ; 45(6): 2688-94, 2006 Mar 20.
Article in English | MEDLINE | ID: mdl-16529492

ABSTRACT

[Au(en)Cl(2)]Cl.2H(2)O, where en = ethylenediamine (1,2-diaminoethane), has been synthesized, and its structure has been solved for the first time by the single-crystal X-ray diffraction method. The complex has square-planar geometry about Au(III), and the anionic Cl- is located in the apical position and at a distance of 3.3033(10) A compared to 2.2811(9) and 2.2836(11) A for the coordinated Cl-. [Au(en)Cl2]Cl.2H2O belongs to the space group Pbca with a = 11.5610(15) A, b = 12.6399(17) A, c = 13.2156(17) A, alpha = beta = gamma = 90 degrees , and Z = 8. Bond lengths of Au-N are 2.03 A. [Au(en)Cl2]Cl.2H2O is less thermally stable than [Au(en)2]Cl3 because of the replacement of two Cl ligands by a second en ligand in the latter. Cyclic voltammetry shows that the formal potential of Au(III)/Au(0) becomes more negative in the series [AuCl4]-, [Au(en)Cl2]+, and [Au(en)2]3+. 1H, 13C, and 31P NMR reveal that in an aqueous solution [Au(en)Cl2]+ bonds to guanosine 5'-monophosphate, 5'-GMP (1:1 mole ratio), via N7, although the stability is not very high. NMR data also indicate that N7-O6 or N7-phosphate 5'-GMP chelation, as found in some gold(III) nucleotide complexes, is not present. The gold(III) complex undergoes hydrolysis at pH >2.5-3.0 and, therefore, N1 coordination to 5'-GMP is not observed. No direct coordination between 5'-GMP and [Au(en)2]Cl3 is observed.


Subject(s)
Ethylenediamines/chemistry , Guanosine Monophosphate/chemistry , Organogold Compounds/chemical synthesis , Electrochemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Organogold Compounds/chemistry
20.
Anal Chem ; 77(19): 6396-401, 2005 Oct 01.
Article in English | MEDLINE | ID: mdl-16194105

ABSTRACT

The redox chemistry of insulin was investigated at glassy carbon (GC) electrodes that were coated with films of chitosan (CHIT) and multiwalled carbon nanotubes (CNT). While bare electrodes deactivated quickly during insulin oxidation, the GC electrodes coated with CHIT and CHIT-CNT films generated stable insulin currents. The GC/CHIT-CNT electrodes were used for investigating the electrooxidation process of insulin and amperometric determination of insulin. The mass spectrometric, electron paramagnetic resonance, and separation studies of electrolyzed insulin solutions suggested that the loss of 4 mass units upon insulin oxidation at CNT could be accounted for by the formation of two dityrosine cross-links intramolecularly. At a potential of 0.700 V and physiological pH 7.40, the GC/CHIT-CNT electrodes displayed a detection limit of approximately 30 nM insulin (S/N = 3), sensitivity of 135 mA M(-1) cm(-2), linear dynamic range from 0.10 to 3.0 microM (R2 = 0.995), and superior operational and long-term stability. The CNT-based electrodes are promising new insulin detectors for diabetes-related studies such as fast chromatographic analysis of therapeutic insulin formulations or evaluation of quality of pancreatic islets prior to their transplantation.


Subject(s)
Carbon/chemistry , Insulin/chemistry , Insulin/metabolism , Amino Acid Sequence , Animals , Cattle , Electrodes , Microscopy, Electron, Scanning , Molecular Sequence Data , Oxidation-Reduction , Solutions , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...