Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Psychopharmacology (Berl) ; 238(8): 2121-2132, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33797571

ABSTRACT

RATIONALE: Major depressive disorder (MDD) is a debilitating disorder with adverse effects on mood, memory, and quality of life. OBJECTIVES: In this study, the antidepressant potential of glatiramer acetate (GA), a drug used in the management of multiple sclerosis, was investigated in acute and chronic models of depression in male mice. The acute antidepressant screening was performed with the forced swim (FST) and tail suspension (TST) tests. In the chronic phase, post-weaning social isolation (SI) was used to induce depressive-/anxiety-like behaviors. METHODS: Mice were reared in two different groups of social (SG) and isolated (IG) for 4 weeks. IG mice were treated with 0.5, 1.0, and 2.0 mg/kg of GA for the last 2 weeks of the SI period. Animals were assessed by the behavioral tests of depression, anxiety, learning, and memory, and hippocampal brain-derived neurotrophic factor (BDNF) level was measured. RESULTS: The acute tests confirmed the antidepressant potential of GA. In the chronic phase, GA could reduce immobility time in FST (P < 0.05), increase exploration activity in open field test (P < 0.05), increase open arms duration (P < 0.05) and entries in elevated plus maze (P<0.001), and improve memory and learning in passive avoidance test (P < 0.05). The BDNF level was increased in IG mice and decreased in IG mice treated with GA. CONCLUSIONS: Our results showed that GA improved depressive-/anxiety-like behaviors and cognitive dysfunction of SI reared mice without increasing the BDNF level which may be associated with other mechanisms of actions of GA.


Subject(s)
Antidepressive Agents/therapeutic use , Anxiety/drug therapy , Cognitive Dysfunction/drug therapy , Depression/drug therapy , Glatiramer Acetate/therapeutic use , Social Isolation , Animals , Antidepressive Agents/pharmacology , Anxiety/psychology , Avoidance Learning/drug effects , Avoidance Learning/physiology , Brain-Derived Neurotrophic Factor/agonists , Brain-Derived Neurotrophic Factor/metabolism , Cognitive Dysfunction/psychology , Depression/psychology , Dose-Response Relationship, Drug , Glatiramer Acetate/pharmacology , Hindlimb Suspension/adverse effects , Hindlimb Suspension/psychology , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice , Social Isolation/psychology , Swimming/psychology , Weaning
2.
Cancer Chemother Pharmacol ; 87(6): 827-842, 2021 06.
Article in English | MEDLINE | ID: mdl-33688998

ABSTRACT

PURPOSE: Glioblastoma multiforme (GBM) is one of the most aggressive human cancers. The c-MET receptor tyrosine kinase (RTK) which is frequently deregulated in GBM is considered as a promising target for GBM treatment. The c-MET plays a key role in cell proliferation, cell cycle progression, invasion, angiogenesis, and metastasis. Here, we investigated the anti-tumour activity of foretinib, a c-MET inhibitor, on three human GBM cells (T98G, U87MG and U251). METHODS: Anti-proliferative effect of foretinib was determined using MTT, crystal violet staining, and clonogenic assays. PI and Annexin V/PI staining flow cytometry were used to evaluate the effects of foretinib on cell cycle and apoptosis, respectively. Scratch assay, qRT-PCR, western blot, and zymography analyses were applied to elucidate the molecular mechanisms underlying the anti-tumour activity of foretinib. RESULTS: Foretinib treatment reduced phosphorylation of c-MET on T98G and U251 cells, but not in U87MG cells. The highest inhibitory effect was observed in T98G cells (IC50 = 4.66 ± 0.29 µM) and the lowest one in U87MG cells (IC50 = 29.99 ± 1.31 µM). The results showed that foretinib inhibited the proliferation of GBM cells through a G2/M cell cycle arrest and mitochondrial-mediated apoptosis in association with alternation in expression of the related genes and protein-regulated G2/M phase and apoptosis. Foretinib diminished GBM cell invasion through downregulation of the proteolytic cascade of MMP2, uPA and uPAR and epithelial-mesenchymal transition (EMT)-related genes. A different GBM cell sensitivity pattern was noticeable in all experiments which demonstrated T98G as a sensitive and U87MG as a resistant phenotype to foretinib treatment. CONCLUSION: The results indicated that foretinib might have the therapeutic potential against human GBM which deserve further investigation.


Subject(s)
Anilides/pharmacology , Apoptosis/drug effects , Brain Neoplasms/drug therapy , Cell Cycle Checkpoints/drug effects , G2 Phase/drug effects , Glioblastoma/drug therapy , Proto-Oncogene Proteins c-met/metabolism , Quinolines/pharmacology , Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial-Mesenchymal Transition/drug effects , Glioblastoma/metabolism , Humans , Receptors, Urokinase Plasminogen Activator/metabolism , Signal Transduction/drug effects
3.
Sci Rep ; 7: 44075, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287096

ABSTRACT

Glioblastoma (GBM) remains one of the most fatal human malignancies due to its high angiogenic and infiltrative capacities. Even with optimal therapy including surgery, radiotherapy and temozolomide, it is essentially incurable. GBM is among the most neovascularised neoplasms and its malignant progression associates with striking neovascularisation, evidenced by vasoproliferation and endothelial cell hyperplasia. Targeting the pro-angiogenic pathways is therefore a promising anti-glioma strategy. Here we show that tivozanib, a pan-inhibitor of vascular endothelial growth factor (VEGF) receptors, inhibited proliferation of GBM cells through a G2/M cell cycle arrest via inhibition of polo-like kinase 1 (PLK1) signalling pathway and down-modulation of Aurora kinases A and B, cyclin B1 and CDC25C. Moreover, tivozanib decreased adhesive potential of these cells through reduction of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Tivozanib diminished GBM cell invasion through impairing the proteolytic cascade of cathepsin B/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase-2 (MMP-2). Combination of tivozanib with EGFR small molecule inhibitor gefitinib synergistically increased sensitivity to gefitinib. Altogether, these findings suggest that VEGFR blockade by tivozanib has potential anti-glioma effects in vitro. Further in vivo studies are warranted to explore the anti-tumour activity of tivozanib in combinatorial approaches in GBM.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Phenylurea Compounds/therapeutic use , Quinolines/therapeutic use , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Anoikis , Brain Neoplasms/complications , Cell Adhesion , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Gefitinib , Glioblastoma/complications , Humans , Neovascularization, Pathologic/complications , Neovascularization, Pathologic/drug therapy , Quinazolines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...