Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 98(13): 135504, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17501213

ABSTRACT

A realization of the numerous phases predicted in systems with long-range repulsive interactions was recently found in Pb/Si(111). Surprisingly, these numerous phases can be grown at low temperatures approximately 40 K over macroscopic distances. This unusual observation can be explained from theoretical calculations of the collective diffusion coefficient D(c) in systems with long-range repulsive interactions. Instead of a gradual dependence of D(c) on coverage, it was found that D(c) has sharp maxima at low temperatures for every stable phase (i.e., for every rational value of the coverage theta=p/q) in agreement with the experiment.

2.
Phys Med Biol ; 41(7): 1167-89, 1996 Jul.
Article in English | MEDLINE | ID: mdl-8822783

ABSTRACT

Experimental tests for non-uniform attenuating media are performed to validate theoretical expressions for the photon detection kernel, obtained from a recently proposed analytical theory of photon propagation and detection for SPECT. The theoretical multi-dimensional integral expressions for the photon detection kernel, which are computed numerically, describe the probability that a photon emitted from a given source voxel will trigger detection of a photon at a particular projection pixel. The experiments were performed using a cylindrical water-filled phantom with large cylindrical air-filled inserts to simulate inhomogeneity of the medium. A point-like, a short thin cylindrical and a large cylindrical radiation source of 99Tcm were placed at various positions within the phantom. The values numerically calculated from the theoretical kernel expression are in very good agreement with the experimentally measured data. The significance of Compton-scattered photons in planar image formation is discussed and highlighted by these results. Using both experimental measurements and the calculated values obtained from the theory, the kernel's size is investigated. This is done by determining the square N x N pixel neighbourhood of the gamma camera that must be connected to a particular radiation source voxel to account for a specific fraction of all counts recorded at all camera pixels. It is shown that the kernel's size is primarily dependent upon the source position and the properties of the attenuating medium through Compton scattering events, with 3D depth-dependent collimator resolution playing an important but secondary role, at least for imaging situations involving parallel hole collimation. By considering small point-like sources within a non-uniform elliptical phantom, approximating the human thorax, it is demonstrated that on average a 12 cm x 12 cm area of the camera plane is required to collect 85% of the total count recorded. This is a significantly larger connectivity than the 3 cm x 3 cm area required if scattering contributions are ignored and only the 3D depth-dependent collimator resolution is considered.


Subject(s)
Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon , Gamma Cameras , Humans , Models, Theoretical , Photons , Thorax
3.
Med Phys ; 21(8): 1311-21, 1994 Aug.
Article in English | MEDLINE | ID: mdl-7799876

ABSTRACT

An analytical theory of photon propagation and detection in single-photon emission computed tomography (SPECT) for collimated detectors is developed from first principles. The total photon detection kernel is expressed as a sum of terms due to the primary and the Compton scattered photons. The primary as well as contributions due to every order of Compton scattering are calculated separately. The model accounts for the three-dimensional depth dependence of the collimator holes as well as for nonhomogeneous attenuation. No specific assumptions about the boundary or the homogeneity of the attenuating medium are made. The energy response of the detector is also modeled by the theory. Analytical expressions are obtained for various contributions to the photon detection kernel, and the multidimensional integrals involved are calculated using standard numerical integration methods. Theoretically calculated projections and scatter fractions for the primary and the first through second scattering orders are compared with our own experimental results for a small cylindrical primary radiation source immersed at various positions in a uniform cylindrical phantom. Also, theoretically calculated scatter fractions for a small spherical (pointlike) source in a uniform elliptic phantom are compared with experimental and Monte Carlo simulation results taken from the recent literature. The results from the analytical method are essentially exact and are free from the inaccuracies inherent in the numerical simulation methods used to deal with the photon propagation and detection problem in SPECT so far. The method developed here is unique in the sense that it provides accurate theoretical predictions of results averaged over an infinite number of simulations or experiments. We believe that our theory enhances an intuitive understanding of the complex image formation process in SPECT and is an important step toward solving the inverse problem, that of reconstructing the primary radiation source distribution from the measured gamma camera projections.


Subject(s)
Models, Theoretical , Tomography, Emission-Computed, Single-Photon , Humans , Mathematics , Photons , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...