Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(47): 54590-54601, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37966899

ABSTRACT

Titanium-based metal-organic framework, NH2-MIL-125(Ti), has been widely investigated for photocatalytic applications but has low activity in the hydrogen evolution reaction (HER). In this work, we show a one-step low-cost postmodification of NH2-MIL-125(Ti) via impregnation of Co(NO3)2. The resulting Co@NH2-MIL-125(Ti) with embedded single-site CoII species, confirmed by XPS and XAS measurements, shows enhanced activity under visible light exposure. The increased H2 production is likely triggered by the presence of active CoI transient sites detected upon collection of pump-flow-probe XANES spectra. Furthermore, both photocatalysts demonstrated a drastic increase in HER performance after consecutive reuse while maintaining their structural integrity and consistent H2 production. Via thorough characterization, we revealed two mechanisms for the formation of highly active proton reduction sites: nondestructive linker elimination resulting in coordinatively unsaturated Ti sites and restructuring of single CoII sites. Overall, this straightforward manner of confinement of CoII cocatalysts within NH2-MIL-125(Ti) offers a highly stable visible-light-responsive photocatalyst.

2.
Energy Adv ; 2(11): 1893-1904, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38013932

ABSTRACT

CO2 electrolysis might be a key process to utilize intermittent renewable electricity for the sustainable production of hydrocarbon chemicals without relying on fossil fuels. Commonly used carbon-based gas diffusion electrodes (GDEs) enable high Faradaic efficiencies for the desired carbon products at high current densities, but have limited stability. In this study, we explore the adaption of a carbon-free GDE from a Chlor-alkali electrolysis process as a cathode for gas-fed CO2 electrolysis. We determine the impact of electrowetting on the electrochemical performance by analyzing the Faradaic efficiency for CO at industrially relevant current density. The characterization of used GDEs with X-ray photoelectron spectroscopy (XPS) and X-Ray diffraction (XRD) reveals a potential-dependent degradation, which can be explained through chemical polytetrafluorethylene (PTFE) degradation and/or physical erosion of PTFE through the restructuring of the silver surface. Our results further suggest that electrowetting-induced flooding lets the Faradaic efficiency for CO drop below 40% after only 30 min of electrolysis. We conclude that the effect of electrowetting has to be managed more carefully before the investigated carbon-free GDEs can compete with carbon-based GDEs as cathodes for CO2 electrolysis. Further, not only the conductive phase (such as carbon), but also the binder (such as PTFE), should be carefully selected for stable CO2 reduction.

3.
Nanomaterials (Basel) ; 13(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446519

ABSTRACT

High-entropy alloys are promising materials for novel thin-film resistors since they have high resistivity and a low-temperature coefficient of resistivity (TCR). In this work, a new high-entropy thin-film CoCrFeNiTix was deposited on a Si/SiO2 substrate by means of magnetron sputtering of the multi-component target produced by hot pressing of the powder mixture. The samples possessed a thickness of 130-230 nm and an amorphous atomic structure with nanocrystallite traces. This structure persisted after being annealed up to 400 °C, which was confirmed using X-ray and electron diffraction. The film had a single-phase structure with a smooth surface and a uniform distribution of all elements. The obtained film served for microresistor elaboration, which was produced using the lithography technique and tested in a temperature range from -60 °C up to 200 °C. Resistivity at room temperature was estimated as 2.37 µOhm·m. The results have demonstrated that TCR depends on temperature according to the simple linear law in a range from -60 °C up to 130 °C, changing its value from -78 ppm/°C at low temperatures to -6.6 ppm/°C at 130 °C. Such characteristics show the possibility of using these high-entropy alloy films for resistive elements in contemporary and future micro-electronic devices.

4.
Angew Chem Int Ed Engl ; 59(32): 13468-13472, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32315516

ABSTRACT

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

5.
Phys Chem Chem Phys ; 20(20): 14242-14250, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29761813

ABSTRACT

III-V semiconductors such as InP are highly efficient light absorbers for photoelectrochemical (PEC) water splitting devices. Yet, their cathodic stability is limited due to photocorrosion and the measured photocurrents do not necessarily originate from H2 evolution only. We evaluated the PEC stability and activation of model p-InP(100) photocathodes upon photoelectrochemical passivation (i.e. repeated surface oxidation/reduction). The electrode was subjected to a sequence of linear potential scans with or without intermittent passivation steps (repeated passivation and continuous reduction, respectively). The evolution of H2 and PH3 gases was monitored by online electrochemical mass spectrometry (OLEMS) and the Faradaic efficiencies of these processes were determined. Repeated passivation led to an increase of the photocurrent in 0.5 M H2SO4, while continuous reduction did not affect the photocurrent of p-InP(100). Neither H2 nor PH3 formation increased to the same extent as the photocurrent during the repeated passivation treatment. Surface analysis of the spent electrodes revealed substantial roughening of the electrode surface by repeated passivation, while continuous reduction left the surface unaltered. On the other hand, photocathodic conditioning performed in 0.5 M HCl led to the expected correlation between photocurrent increase and H2 formation. Ultimately, the H2 evolution rates of the photoelectrodes in H2SO4 and HCl are comparable. The much higher photocurrent in H2SO4 is due to competing side-reactions. The results emphasize the need for a detailed evaluation of the Faradaic efficiencies of all the involved processes using a chemical-specific technique like OLEMS. Photo-OLEMS can be beneficial in the study of photoelectrochemical reactions enabling the instantaneous detection of small amounts of reaction by-products.

6.
ChemElectroChem ; 5(8): 1230-1239, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29732273

ABSTRACT

Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH3) of Co3O4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j0=-8.9 ⋅ 10-5 A/cm2. The apparent activation energy of HER on CoP x (Ea=81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H2SO4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.

7.
ACS Catal ; 7(8): 5121-5128, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28824820

ABSTRACT

Colloidal synthesis routes have been recently used to fabricate heterogeneous catalysts with more controllable and homogeneous properties. Herein a method was developed to modify the surface composition of colloidal nanocrystal catalysts and to purposely introduce specific atoms via ligands and change the catalyst reactivity. Organic ligands adsorbed on the surface of iron oxide catalysts were exchanged with inorganic species such as Na2S, not only to provide an active surface but also to introduce controlled amounts of Na and S acting as promoters for the catalytic process. The catalyst composition was optimized for the Fischer-Tropsch direct conversion of synthesis gas into lower olefins. At industrially relevant conditions, these nanocrystal-based catalysts with controlled composition were more active, selective, and stable than catalysts with similar composition but synthesized using conventional methods, possibly due to their homogeneity of properties and synergic interaction of iron and promoters.

8.
Chem Commun (Camb) ; 48(76): 9477-9, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-22898828

ABSTRACT

Conjugated PPV-PPE copolymer has been investigated in organic solar cells in combination with twelve different fullerene derivatives. It was shown that the length of solubilizing alkyl chains in the fullerene derivative structures correlates well with the performance of photovoltaic cells.

9.
ChemSusChem ; 3(3): 356-66, 2010 Mar 22.
Article in English | MEDLINE | ID: mdl-20077464

ABSTRACT

Novel fullerene derivatives bearing thiophene and furan residues were synthesized and studied as electron acceptor materials in bulk heterojunction organic solar cells, together with poly(3-hexylthiophene) (P3HT) as the donor polymer. Some compounds showed large nanomorphological inhomogenities in blends with P3HT; in particular, clusters with dimensions in the range of 100-1000 nm were formed. However, some blends that showed such large clusters yielded at the same time high power conversion efficiencies in photovoltaic devices, approaching 3.7 %. This is in sharp contrast with previously studied systems, in which a substantial phase separation always resulted in a poor photovoltaic performance. We assume that the attachment of thienyl or furyl groups to the fullerene cage results in a certain ordering of the designed fullerene derivatives I-IX with P3HT in photoactive blends. Both the fullerene derivative and P3HT might assemble via pi-pi stacking of the thiophene units to form the nanostructures observed in the films by optical and atomic force microscopy. The presence of ordered donor and acceptor counterparts in these nanostructures results in superior photovoltaic device operation.


Subject(s)
Electric Power Supplies , Fullerenes/chemistry , Furans/chemistry , Methanol , Solar Energy , Thiophenes/chemistry , Electrochemistry , Methanol/analogs & derivatives , Methanol/chemical synthesis , Methanol/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Nanostructures/ultrastructure , Photochemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...