Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(43): e2310777120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37851675

ABSTRACT

Direct detection of spontaneous spin fluctuations, or "magnetization noise," is emerging as a powerful means of revealing and studying magnetic excitations in both natural and artificial frustrated magnets. Depending on the lattice and nature of the frustration, these excitations can often be described as fractionalized quasiparticles possessing an effective magnetic charge. Here, by combining ultrasensitive optical detection of thermodynamic magnetization noise with Monte Carlo simulations, we reveal emergent regimes of magnetic excitations in artificial "tetris ice." A marked increase of the intrinsic noise at certain applied magnetic fields heralds the spontaneous proliferation of fractionalized excitations, which can diffuse independently, without cost in energy, along specific quasi-1D spin chains in the tetris ice lattice.

2.
Nano Lett ; 22(1): 426-432, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34918936

ABSTRACT

In monolayer transition-metal dichalcogenide semiconductors, many-body correlations can manifest in optical spectra when electron-hole pairs (excitons) are photoexcited into a 2D Fermi sea of mobile carriers. At low carrier densities, the formation of charged excitons (X±) is well documented. However, in WSe2 monolayers, an additional absorption resonance, often called X-', emerges at high electron density. Its origin is not understood. Here, we investigate the X-' state via polarized absorption spectroscopy of gated WSe2 monolayers in magnetic fields to 60T. Field-induced filling and emptying of the lowest optically active Landau level in the K' valley causes repeated quenching of the corresponding optical absorption. Surprisingly, these quenchings are accompanied by absorption changes to higher Landau levels in both K' and K valleys, which are unoccupied. These results cannot be reconciled within a single-particle picture, and demonstrate the many-body nature and intervalley correlations of the X-' quasiparticle state.

3.
ACS Nano ; 15(9): 14444-14452, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34473467

ABSTRACT

Colloidal CdSe quantum dots (QDs) designed with a high degree of asymmetric internal strain have recently been shown to host a number of desirable optical properties including subthermal room-temperature line widths, suppressed spectral diffusion, and high photoluminescence (PL) quantum yields. It remains an open question, however, whether they are well-suited for applications requiring emission of identical single photons. Here we measure the low-temperature PL dynamics and the polarization-resolved fluorescence line narrowing spectra from ensembles of these strained QDs. Our spectroscopy reveals the radiative recombination rates of bright and dark excitons, the relaxation rate between the two, and the energy spectra of the quantized acoustic phonons in the QDs that can contribute to relaxation processes. In comparison to conventional colloidal CdSe/ZnS core/shell QDs, we find that in asymmetrically strained CdSe QDs over six times more light is emitted directly by the bright exciton. These results are therefore encouraging for the prospects of chemically synthesized colloidal QDs as emitters of single indistinguishable photons.

4.
J Am Chem Soc ; 142(42): 18160-18173, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32927952

ABSTRACT

The incorporation of manganese (Mn) ions into Cd(Zn)-chalcogenide QDs activates strong spin-exchange interactions between the magnetic ions and intrinsic QD excitons that have been exploited for color conversion, sunlight harvesting, electron photoemission, and advanced imaging and sensing. The ability to take full advantage of novel functionalities enabled by Mn dopants requires accurate control of doping levels over a wide range of Mn contents. This, however, still represents a considerable challenge. Specific problems include the difficulty in obtaining high Mn contents, considerable broadening of QD size dispersion during the doping procedure, and large batch-to-batch variations in the amount of incorporated Mn. Here, we show that these problems originate from the presence of unreacted cadmium (Cd) complexes whose abundance is linked to uncontrolled impurities participating in the QD synthesis. After identifying these impurities as secondary phosphines, we modify the synthesis by introducing controlled amounts of "functional" secondary phosphine species. This allows us to realize a regime of nearly ideal QD doping when incorporation of magnetic ions occurs solely via addition of Mn-Se units without uncontrolled deposition of Cd-Se species. Using this method, we achieve very high per-dot Mn contents (>30% of all cations) and thereby realize exceptionally strong exciton-Mn exchange coupling with g-factors of ∼600.

5.
Nanotechnology ; 29(20): 205205, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29488898

ABSTRACT

A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

6.
Nano Lett ; 15(3): 1972-8, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25710186

ABSTRACT

We study the impact of the nanowire shape anisotropy on the spin splitting of excitonic photoluminescence. The experiments are performed on individual ZnMnTe/ZnMgTe core/shell nanowires as well as on ZnTe/ZnMgTe core/shell nanowires containing optically active magnetic CdMnTe insertions. When the magnetic field is oriented parallel to the nanowire axis, the spin splitting is several times larger than for the perpendicular field. We interpret this pronounced anisotropy as an effect of mixing of valence band states arising from the strain present in the core/shell geometry. This interpretation is further supported by theoretical calculations which allow to reproduce experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...