Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(22): 15070-15084, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768950

ABSTRACT

Despite the increased use of computational tools to supplement medicinal chemists' expertise and intuition in drug design, predicting synthetic yields in medicinal chemistry endeavors remains an unsolved challenge. Existing design workflows could profoundly benefit from reaction yield prediction, as precious material waste could be reduced, and a greater number of relevant compounds could be delivered to advance the design, make, test, analyze (DMTA) cycle. In this work, we detail the evaluation of AbbVie's medicinal chemistry library data set to build machine learning models for the prediction of Suzuki coupling reaction yields. The combination of density functional theory (DFT)-derived features and Morgan fingerprints was identified to perform better than one-hot encoded baseline modeling, furnishing encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.


Subject(s)
Drug Design , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis , Machine Learning , Density Functional Theory , Molecular Structure , Chemistry, Pharmaceutical/methods
2.
Sci Rep ; 12(1): 5383, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354901

ABSTRACT

Even though amyotrophic lateral sclerosis (ALS) is a disease of the upper and lower motor neurons, to date none of the compounds in clinical trials have been tested for improving the health of diseased upper motor neurons (UMNs). There is an urgent need to develop preclinical assays that include UMN health as a readout. Since ALS is a complex disease, combinatorial treatment strategies will be required to address the mechanisms perturbed in patients. Here, we describe a novel in vitro platform that takes advantage of an UMN reporter line in which UMNs are genetically labeled with fluorescence and have misfolded SOD1 toxicity. We report that NU-9, an analog of the cyclohexane-1,3-dione family of compounds, improves the health of UMNs with misfolded SOD1 toxicity more effectively than riluzole or edaravone, -the only two FDA-approved ALS drugs to date-. Interestingly, when NU-9 is applied in combination with riluzole or edaravone, there is an additive effect on UMN health, as they extend longer axons and display enhanced branching and arborization, two important characteristics of healthy UMNs in vitro.


Subject(s)
Amyotrophic Lateral Sclerosis , Riluzole , Amyotrophic Lateral Sclerosis/drug therapy , Animals , Edaravone/pharmacology , Humans , Mice , Motor Neurons , Riluzole/pharmacology , Riluzole/therapeutic use , Superoxide Dismutase
3.
Bioorg Med Chem Lett ; 48: 128273, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34298132

ABSTRACT

The enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF. The L-isomer possessed the highest potency, binding BpIspF with a KD of 36 µM and inhibited BpIspF activity 55% at 120 µM. The high-resolution crystal structure of the L-tryptophan hydroxamate (3)/BpIspF complex revealed a non-traditional mode of hydroxamate binding where the ligand interacts with the active site zinc ion through the primary amine. In addition, two hydrogen bonds are formed with active site groups, and the indole group is buried within the hydrophobic pocket composed of side chains from the 60 s/70 s loop. Along with the co-crystal structure, STD NMR studies suggest the methylene group and indole ring are potential positions for optimization to enhance binding potency.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Burkholderia pseudomallei/enzymology , Enzyme Inhibitors/pharmacology , Tryptophan/analogs & derivatives , Bacterial Proteins/metabolism , Binding Sites/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Tryptophan/chemical synthesis , Tryptophan/chemistry , Tryptophan/pharmacology
4.
Clin Transl Med ; 11(2): e336, 2021 02.
Article in English | MEDLINE | ID: mdl-33634973

ABSTRACT

BACKGROUND: Upper motor neurons (UMNs) are a key component of motor neuron circuitry. Their degeneration is a hallmark for diseases, such as hereditary spastic paraplegia (HSP), primary lateral sclerosis (PLS), and amyotrophic lateral sclerosis (ALS). Currently there are no preclinical assays investigating cellular responses of UMNs to compound treatment, even for diseases of the UMNs. The basis of UMN vulnerability is not fully understood, and no compound has yet been identified to improve the health of diseased UMNs: two major roadblocks for building effective treatment strategies. METHODS: Novel UMN reporter models, in which UMNs that are diseased because of misfolded superoxide dismutase protein (mSOD1) toxicity and TDP-43 pathology are labeled with eGFP expression, allow direct assessment of UMN response to compound treatment. Electron microscopy reveals very precise aspects of endoplasmic reticulum (ER) and mitochondrial damage. Administration of NU-9, a compound initially identified based on its ability to reduce mSOD1 toxicity, has profound impact on improving the health and stability of UMNs, as identified by detailed cellular and ultrastructural analyses. RESULTS: Problems with mitochondria and ER are conserved in diseased UMNs among different species. NU-9 has drug-like pharmacokinetic properties. It lacks toxicity and crosses the blood brain barrier. NU-9 improves the structural integrity of mitochondria and ER, reduces levels of mSOD1, stabilizes degenerating UMN apical dendrites, improves motor behavior measured by the hanging wire test, and eliminates ongoing degeneration of UMNs that become diseased both because of mSOD1 toxicity and TDP-43 pathology, two distinct and important overarching causes of motor neuron degeneration. CONCLUSIONS: Mechanism-focused and cell-based drug discovery approaches not only addressed key cellular defects responsible for UMN loss, but also identified NU-9, the first compound to improve the health of diseased UMNs, neurons that degenerate in ALS, HSP, PLS, and ALS/FTLD patients.


Subject(s)
Endoplasmic Reticulum/pathology , Mitochondria/pathology , Motor Neuron Disease/pathology , Proteostasis Deficiencies/pathology , Superoxide Dismutase-1/metabolism , TDP-43 Proteinopathies/pathology , Animals , Endoplasmic Reticulum/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Motor Neuron Disease/metabolism , Proteostasis Deficiencies/metabolism , Rotarod Performance Test , TDP-43 Proteinopathies/metabolism
5.
Angew Chem Int Ed Engl ; 58(24): 7987-7991, 2019 06 11.
Article in English | MEDLINE | ID: mdl-30891860

ABSTRACT

Technologies that enable rapid screening of diverse reaction conditions are of critical importance to methodology development and reaction optimization, especially when molecules of high complexity and scarcity are involved. The lack of a general solid dispensing method for chemical reagents on micro- and nanomole scale prevents the full utilization of reaction screening technologies. We herein report the development of a technology in which glass beads coated with solid chemical reagents (ChemBeads) enable the delivery of nanomole quantities of solid chemical reagents efficiently. By exploring the concept of preferred screening sets, the flexibility and generality of this technology for high-throughput reaction screening was validated.

6.
Bioorg Med Chem Lett ; 25(24): 5699-704, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26584881

ABSTRACT

The fragment FOL7185 (compound 17) was found to be a hit against IspD and IspE enzymes isolated from bacteria, and a series of analogs containing the pyrazolopyrimidine core were synthesized. The majority of these compounds inhibited the growth of Burkholderia thailandensis (Bt) and Pseudomonas aeruginosa (Pa) in the Kirby­Bauer disk diffusion susceptibility test. Compound 29 shows inhibitory activity at 0.1 mM (32.2 lg/mL), which is comparable to the control compound kanamycin (48.5 lg/mL). Compound 29 also shows inhibitory activity at 0.5 mM against kanamycin resistant P. aeruginosa. Saturation transfer difference NMR (STD-NMR) screening of these compounds against BtIspD and BtIspE indicated that most of these compounds significantly interact with BtIspE, suggesting that the compounds may inhibit the growth of Bt by disrupting isoprenoid biosynthesis. Ligand epitope mapping of compound 29 with BtIspE indicated that hydrogens on 2,4-dichlorophenyl group have higher proximity to the surface of the enzyme than hydrogens on the pyrazolopyrimidine ring.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Burkholderia/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...