Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Integr Org Biol ; 4(1): obac003, 2022.
Article in English | MEDLINE | ID: mdl-35274078

ABSTRACT

The mechanical properties of intestinal tissues determine how a thin-walled structure exerts forces on food and absorbs the force of food as it enters and travels down the gut. These properties are critically important in durophagous and stomachless fish, which must resist the potential damage to foreign bodies (e.g., shells fragments) in their diet. We test the hypothesis that the mechanical properties of the alimentary tract will differ along its length. We predict that the proximal region of the gut should be the strongest and most extensible to handle the large influx of prey often associated with stomachless fish that lack a storage depot. We developed a custom inflation technique to measure the passive mechanical properties of the whole intestine of the stomachless shiner perch, Cymatogaster aggregata. We show that mechanical properties differ significantly along the length of the alimentary tract when inflated to structural failure, with 25-46% greater maximal stress, strain, extension ratio, and toughness at the proximal (25%) position. We also find that the alimentary tissues (excluding the heavily muscular rectum) are generally highly extensible and anisotropic, and do not differ in wall circumference or thickness along the alimentary tract. These findings contribute to our knowledge of the mechanical properties of fish intestinal tissues and guide future studies of factors influencing the evolution of fish alimentary systems.


Les propriétés mécaniques des tissus intestinaux déterminent la manière dont une structure à paroi mince exerce des forces sur les aliments et absorbe leur force lorsque ceux-ci pénètrent et descendent dans l'intestin. Ces propriétés sont d'une importance capitale chez les poissons durophages et ceux sans estomac qui doivent résister aux possibles dommages que peuvent provoquer l'ingestion de corps étrangers (comme des fragments de coquilles) lorsqu'ils s'alimentent. Nous testons l'hypothèse selon laquelle les propriétés mécaniques du tube digestif diffèrent sur sa longueur. Nous prédisons que la région proximale de l'intestin devrait être la plus solide et la plus extensible pour gérer le grand afflux de proies souvent associé aux poissons sans estomac qui n'ont pas de capacité de stockage. Nous avons élaboré une technique de gonflage propre pour mesurer les propriétés mécaniques passives de l'ensemble de l'intestin de la perche méné dépourvue d'estomac, Cymatogaster aggregata. Nous montrons que les propriétés mécaniques diffèrent significativement le long du tube digestif lorsqu'il est gonflé jusqu'à une défaillance structurelle, avec une contrainte maximale, une déformation, un rapport d'extension et une résistance supérieurs de 25 à 46% à la position proximale (25%). Nous constatons également que les tissus de l'appareil digestif (à l'exclusion du rectum fortement musclé) sont généralement très extensibles et anisotropes, et ne diffèrent pas par la circonférence ou l'épaisseur de la paroi le long du tube digestif. Ces résultats contribuent à notre connaissance des propriétés mécaniques des tissus intestinaux des poissons et orientent les futures études sur les facteurs influençant l'évolution des systèmes alimentaires des poissons.

2.
Curr Biol ; 27(5): 673-679, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28216319

ABSTRACT

Peripheral nerves are susceptible to stretch injury [1-4] and incorporate structural waviness at the level of the axons, fascicles, and nerve trunk to accommodate physiological increases in length [5, 6]. It is unknown whether there are limits to the amount of deformation that waviness can accommodate. In rorqual whales, a sub-group of baleen whales, nerves running through the ventral groove blubber (VGB) associated with the floor of the mouth routinely experience dramatically large deformations. In fact, some of these nerves more than double their length during lunge feeding and then recoil to a short, compressed state after each lunge [7-9]. It is unknown how these nerves have adapted to operate in both extended and recoiled states. Using micro-CT and mechanics, we have discovered that the VGB nerves from fin whales require two levels of waviness to prevent stretch damage in both extended and recoiled states. The entire nerve core itself is highly folded when recoiled and appears buckled. This folding provides slack for extension but unavoidably generates large stretches at the bends that could damage nerve fascicles within the core. The strain at the bends is minimized by the specific waveform adopted by the core [10, 11], while the existing bending strains are accommodated by a second level of waviness in the individual fascicles that avoids stretch of the fascicle itself. Structural hierarchy partitions the waviness between the two length scales, providing a mechanism to maintain total elongation while preventing the stretching of fascicles at the bends when recoiled.


Subject(s)
Feeding Behavior/physiology , Fin Whale/physiology , Peripheral Nerves/physiology , Animals , Biomechanical Phenomena , Cadaver , X-Ray Microtomography
3.
J Phycol ; 47(6): 1360-7, 2011 Dec.
Article in English | MEDLINE | ID: mdl-27020360

ABSTRACT

Over the last two decades, many studies on functional morphology have suggested that material properties of seaweed tissues may influence their fitness. Because hydrodynamic forces are likely the largest source of mortality for seaweeds in high wave energy environments, tissues with material properties that behave favorably in these environments are likely to be selected for. However, it is very difficult to disentangle the effects of materials properties on seaweed performance because size, shape, and habitat also influence mechanical and hydrodynamic performance. In this study, anatomical and material properties of 16 species of foliose red macroalgae were determined, and their effects on hydrodynamic performance were measured in laboratory experiments holding size and shape constant. We determined that increased blade thickness (primarily caused by the addition of medullary tissue) results in higher flexural stiffness (EI), which inhibits the seaweed's ability to reconfigure in flowing water and thereby increases drag. However, this increase is concurrent with an increase in the force required to break tissue, possibly offsetting any risk of failure. Additionally, while increased nonpigmented medullary cells may pose a higher metabolic cost to the seaweed, decreased reconfiguration causes thicker tissues to expose more photosynthetic surface area incident to ambient light in flowing water, potentially ameliorating the metabolic cost of producing these cells. Material properties can result in differential performance of morphologically similar species. Future studies on ecomechanics of seaweeds in wave-swept coastal habitats should consider the interaction of multiple trade-offs.

4.
Bioinspir Biomim ; 5(3): 035002, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20729569

ABSTRACT

Textile manufacturing is one of the largest industries in the world, and synthetic fibres represent two-thirds of the global textile market. Synthetic fibres are manufactured from petroleum-based feedstocks, which are becoming increasingly expensive as demand for finite petroleum reserves continues to rise. For the last three decades, spider silks have been held up as a model that could inspire the production of protein fibres exhibiting high performance and ecological sustainability, but unfortunately, artificial spider silks have yet to fulfil this promise. Previous work on the biomechanics of protein fibres from the slime of hagfishes suggests that these fibres might be a superior biomimetic model to spider silks. Based on the fact that the proteins within these 'slime threads' adopt conformations that are similar to those in spider silks when they are stretched, we hypothesized that draw processing of slime threads should yield fibres that are comparable to spider dragline silk in their mechanical performance. Here we show that draw-processed slime threads are indeed exceptionally strong and tough. We also show that post-drawing steps such as annealing, dehydration and covalent cross-linking can dramatically improve the long-term dimensional stability of the threads. The data presented here suggest that hagfish slime threads are a model that should be pursued in the quest to produce fibres that are ecologically sustainable and economically viable.


Subject(s)
Biomimetic Materials/chemistry , Materials Testing , Nanofibers/chemistry , Proteins/chemistry , Textiles , Animals , Elasticity , Fibroins/chemistry , Hagfishes , Humidity , Intermediate Filaments/chemistry , Models, Chemical , Protein Conformation , Silk/chemistry , Tensile Strength
5.
Nature ; 465(7294): 69-73, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20445626

ABSTRACT

The passive elasticity of muscle is largely governed by the I-band part of the giant muscle protein titin, a complex molecular spring composed of a series of individually folded immunoglobulin-like domains as well as largely unstructured unique sequences. These mechanical elements have distinct mechanical properties, and when combined, they provide the desired passive elastic properties of muscle, which are a unique combination of strength, extensibility and resilience. Single-molecule atomic force microscopy (AFM) studies demonstrated that the macroscopic behaviour of titin in intact myofibrils can be reconstituted by combining the mechanical properties of these mechanical elements measured at the single-molecule level. Here we report artificial elastomeric proteins that mimic the molecular architecture of titin through the combination of well-characterized protein domains GB1 and resilin. We show that these artificial elastomeric proteins can be photochemically crosslinked and cast into solid biomaterials. These biomaterials behave as rubber-like materials showing high resilience at low strain and as shock-absorber-like materials at high strain by effectively dissipating energy. These properties are comparable to the passive elastic properties of muscles within the physiological range of sarcomere length and so these materials represent a new muscle-mimetic biomaterial. The mechanical properties of these biomaterials can be fine-tuned by adjusting the composition of the elastomeric proteins, providing the opportunity to develop biomaterials that are mimetic of different types of muscles. We anticipate that these biomaterials will find applications in tissue engineering as scaffold and matrix for artificial muscles.


Subject(s)
Biocompatible Materials/chemistry , Biopolymers/chemistry , Muscle Proteins/chemistry , Protein Kinases/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biomechanical Phenomena , Biomimetics/methods , Connectin , Drosophila melanogaster/genetics , Elasticity , Polyproteins/chemistry , Stress, Mechanical
6.
J Exp Biol ; 211(Pt 17): 2832-40, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18723542

ABSTRACT

This study documents the effect of body mass on the size and strength of draglines produced by the orb-weaving spider Araneus diadematus and the jumping spider Salticus scenicus. Silk samples obtained from individuals spanning the range from first-instar juveniles to gravid adults were tested to determine both the properties of the silk material and the strength and static safety factor of the draglines produced by each individual spider. Analysis of material properties indicates that the tensile strength and extensibility of the silks employed by each species are identical over the entire size range of the species. Analysis of the breaking forces for individual draglines, however, indicates that the draglines scale allometrically with the spider's body mass. For Araneus, breaking force (N) scales with body mass (kg) as Fmax=11.2M0.786, and the static safety factor (S(BW)=Fmax/Mg) scales as S(BW)=1.14M(-0.214). For Salticus, Fmax=0.363M0.66 and S(BW)=0.037M(-0.34). Thus, static safety factors decrease as these spiders grow, with values falling to 4-6 for adult Araneus and to 1-2 for adult Salticus. Analysis of these results suggests that the safety lines produced by these two species are not able to absorb the impact energy of most falls with a fixed length of pre-existing silk, except in the smallest of the Araneus spiders. It is therefore likely that both spiders must draw new silk from their spinnerets during falls to keep the dynamic loads on their safety-lines below failure levels.


Subject(s)
Silk/physiology , Spiders/physiology , Animals , Body Weight , Models, Biological , Tensile Strength
7.
J Exp Biol ; 211(Pt 12): 1948-57, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18515725

ABSTRACT

This study used thermoelastic measurements to investigate the role of proline in the elastic mechanism of hydrated, spider major ampullate (MA) and flagelliform (FL) silks. Experiments on hydrated MA silk from Araneus diadematus (proline content 16%) reveal that conformational entropy elasticity accounts for about 90% of the elastic force at small extensions, but entropy elasticity drops to about half by 50% extension. The decrease in the entropic component with extension is due to the presence of relatively short and conformationally restricted network chains in Araneus MA silk. Experiments on hydrated Araneus FL silk (proline content 16%) indicate that entropy elasticity dominates the elastic mechanism up to extensions of 100% and beyond, which likely reflects the fact that the glycine-rich network chains in FL silk are longer and less conformationally restricted than those in the MA silk. Thus, the rubber-like, entropic elasticity of these two proline-rich silks is consistent with networks of amorphous chains that become mobile when hydrated. By contrast, the elastic mechanism of hydrated Nephila clavipes MA silk (proline content 3.5%) shows a small contribution from entropic elasticity for extensions of 5% or less, and by 10% extension the elastic force is due entirely to bond-energy elasticity, probably associated with the deformation of stable secondary structures. These results indicate that there are major differences in the structural organization of the glycine-rich network chains and the mechanism of elasticity in proline-rich and proline-deficient fibroins.


Subject(s)
Models, Chemical , Proline/chemistry , Silk/chemistry , Spiders/chemistry , Animals , British Columbia , Elasticity , Female , Florida , Hot Temperature , Water/chemistry
8.
J Exp Biol ; 211(Pt 12): 1937-47, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18515724

ABSTRACT

The silk that orb-weaving spiders produce for use as dragline and for the frame of the web is spun from the major ampullate (MA) glands, and it is renowned for its exceptional toughness. The fibroins that make up MA silk have previously been organized into two major groupings, spidroin-1 and spidroin-2, based largely on differences in amino acid sequence. The most apparent difference between spidroin-1 and spidroin-2 fibroins is the lack of proline in spidroin-1. The MA silk of Araneus diadematus comprises two spidroin-2 fibroins, and is therefore proline-rich, whereas spidroin-1 is preferentially expressed in Nephila clavipes MA silk, and so this silk is proline deficient. Together, these two silks provide a system for testing the consequences of proline-rich and proline-deficient fibroin networks. This study measures the mechanical and optical properties of dry and hydrated Araneus and Nephila MA silks. Since proline acts to disrupt secondary structure, it is hypothesized that the fibroin network of Araneus MA silk will contain less secondary structure than the network of Nephila MA silk. Mechanical and optical studies clearly support this hypothesis. Although the dry properties of these two silks are indistinguishable, there are large differences between the hydrated silks. Nephila silk does not swell upon hydration to the same degree as Araneus silk. In addition, upon hydration, Nephila MA silk retains more of its initial dry stiffness, and retains more molecular order, as indicated by birefringence measurements.


Subject(s)
Fibroins/chemistry , Proline/chemistry , Silk/chemistry , Spiders/chemistry , Amino Acid Sequence , Animals , Biomechanical Phenomena , Birefringence , British Columbia , Female , Fibroins/genetics , Florida , Models, Chemical , Molecular Sequence Data , Water/chemistry
9.
J Exp Biol ; 209(Pt 4): 702-10, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16449564

ABSTRACT

Hagfish are able to produce substantial amounts of slime when harassed, but the precise ecological function of the slime is unclear. One possibility is that the slime acts as a defence against gill-breathing predators, whose gills may become entangled with the slime's mixture of mucins and fibrous threads during an attack. We previously demonstrated that hagfish slime does not bind water tightly, but instead behaves like a fine sieve that slows water down via viscous entrainment. These properties are consistent with the gill-clogging hypothesis, which we tested here by quantifying the effects of hagfish slime on water flow through an artificial gill model and real fish gills. Our results indicate that the slime is capable of clogging gills and increasing the resistance that they present to the flow of water. We also characterized the behaviour of slime release from live hagfish and the effect of convective mixing on the formation of slime in vitro. Our observations show that exudate is locally released from the slime glands as a coherent jet and that hagfish do not appear to use their slime as a protective envelope. We found that convective mixing between the exudate and seawater is necessary for proper slime formation, but excessive mixing leads to the slime's collapse. We suggest that the loose binding of water by the slime may be an optimal solution to the problem of delivering an expanding jet of flow-inhibiting material to the gills of would-be predators.


Subject(s)
Gills/metabolism , Gills/physiology , Hagfishes/physiology , Models, Biological , Mucins/physiology , Animals , Biomechanical Phenomena , Mucins/metabolism
10.
J Exp Biol ; 208(Pt 24): 4613-25, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16326943

ABSTRACT

Hagfish slime consists of mucins and protein threads that are released from slime glands and mix with seawater to produce an ephemeral material with intriguing physical properties. We recently characterized the mechanics of the slime's fibrous component, and here we report the first mechanical properties of the mucin component and the slime as a whole. Our results suggest that hagfishes can produce remarkable quantities of the slime because it is almost three orders of magnitude more dilute than typical mucus secretions. Mechanical experiments using whole slime produced in vitro demonstrate that the slime threads dominate the slime's material properties and impart elasticity. Mucins impart viscosity at the strain rates tested and are important for rapid deployment of the slime. We also found that slime threads are tapered at both ends, which suggested to us that hagfish slime might best be modeled as a discontinuous fibre-reinforced composite. Our measurements demonstrate that the mucins are not capable of providing shear linkage between threads, but this is not necessary because the threads are long enough to span an entire slime mass. Our findings suggest that hagfish slime consists mainly of bulk seawater entrained between mucin-coated threads, and in this way functions more like a fine sieve than coherent mucus. These results are consistent with the hypothesis that the slime has evolved as a defense against gill-breathing predators.


Subject(s)
Complex Mixtures/chemistry , Hagfishes/metabolism , Mucus/chemistry , Seawater/chemistry , Animals , Biomechanical Phenomena , Mucus/cytology
11.
J Exp Biol ; 208(Pt 20): 3819-34, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16215211

ABSTRACT

Hydromedusan jellyfish swim by rhythmic pulsation of their mesogleal bells. A single swimming muscle contracts to create thrust by ejecting water from the subumbrellar cavity. At the end of the contraction, energy stored in the deformation of the mesogleal bell powers the refilling stage, during which water is sucked back into the subumbrellar cavity. The mesoglea is a mucopolysaccharide gel reinforced with radially oriented fibres made primarily of a protein homologous to mammalian fibrillin. Most of the energy required to power the refill stroke is thought to be stored by stretching these fibres. The elastic modulus of similar fibrillin-rich fibres has been measured in other systems and found to be in the range of 0.2 to 1.1 MPa. In this paper, we measured the diameters of the fibres, their density throughout the bell, and the mechanical behaviour of the mesoglea, both in isolated samples and in an intact bell preparation. Using this information, we calculated the stiffness of the fibres of the hydromedusa Polyorchis penicillatus, which we found to be approximately 0.9 MPa, similar in magnitude to other species. This value is two orders of magnitude more compliant than the stiffness of the component fibrillin microfibrils previously reported. We show that the structure of the radial fibres can be modelled as a parallel fibre-reinforced composite and reconcile the stiffness difference by reinterpreting the previously reported data. We separate the contributions to the bell elasticity of the fibres and mesogleal matrix and calculate the energy storage capacity of the fibres using the calculated value of their stiffness and measured densities and diameters. We conclude that there is enough energy potential in the fibres alone to account for the energy required to refill the subumbrellar cavity.


Subject(s)
Hydrozoa/physiology , Microfilament Proteins/physiology , Animals , Elasticity , Fibrillins , Hydrozoa/anatomy & histology
12.
J Exp Biol ; 208(Pt 5): 929-38, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15755891

ABSTRACT

Muscle length changes of the lateral myotomal fast fibers of rainbow trout (Oncorhynchus mykiss) were measured using sonomicrometry during induced fast-starts. Simultaneous high-speed videography allowed for the analysis of midline kinematics to estimate the degree of muscle strain that occurs during body deformation. Comparison of these data was used to examine the phase relationship between local muscle shortening and local body bending during unsteady, large amplitude maneuvers. Our analysis finds that muscle shortening is temporally decoupled from body bending, probably due to the influence of hydrodynamic forces. The phase shift was such that midline curvature lagged behind muscle shortening at both the anterior (0.4 L, where L is fork length) and posterior (0.7 L) axial positions. Stronger escape responses were correlated with high peak strains and rapid strain-wave velocities, but not faster curvature-wave velocities. Under these conditions of high strain, the phase shift at the posterior position is significantly increased, whereas the anterior position fails to be affected. Curvature lag was still observed at both axial locations under conditions of low strain, suggesting that hydrodynamic forces are still significant during weaker escape responses. These data support a previous model that suggests fast-start body bending is determined by the interaction between muscle torque and hydrodynamic resistance along the body.


Subject(s)
Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle, Skeletal/physiology , Oncorhynchus mykiss/physiology , Swimming/physiology , Animals , Biomechanical Phenomena , Time Factors , Torque
13.
Biomacromolecules ; 5(3): 675-9, 2004.
Article in English | MEDLINE | ID: mdl-15132646

ABSTRACT

Silk produced from the major ampullate (MA) gland supercontracts when wet, and in this paper, we investigate the consequences of high humidity and of the added load of water droplets condensing from saturated air on the mechanical integrity of the spiders' orb web. We measured the development of the supercontraction stress (sigma(sc)) with time when fixed lengths of MA silk from Nephila clavipes and Argiope aurantia were exposed to increasing humidity. Supercontraction generated stresses of about 50 MPa, and extension of these samples to stresses between 150 and 1100 MPa show a time dependent relaxation over 1000 s to approximately 75% of the initial tension but show no indication of failure. We conclude that supercontraction can maintain tension in webs and does not limit the ability of the web to support loads in excess of the supercontraction stress.


Subject(s)
Silk/chemistry , Spiders/chemistry , Animals , Stress, Mechanical
14.
Biomacromolecules ; 5(3): 727-31, 2004.
Article in English | MEDLINE | ID: mdl-15132653

ABSTRACT

The forced silking of a spider to obtain major ampullate (MA) silk for experiments is a standard practice; however, this method may have profound effects on the resulting silk's properties. Experiments were performed to determine the magnitude of the difference in the forces required to draw silk from the MA gland between unrestrained spiders descending on their draglines and restrained spiders from which MA silk was drawn with a motor. The results show that freely falling spiders can spool silk with as little as 0.1 body weights of force, which generates a stress that is about 2% of the silk's tensile strength. In contrast, forcibly silked spiders apply as much as 4 body weights of force with an internal braking mechanism, and this force creates silk stresses in excess of 50% of the silk's tensile strength. The large forces observed in forced silking should strongly affect the draw alignment of the polymer network in the newly spun fibers, and this may account for the differences in material properties observed between naturally spun and forcibly spun MA silks. In addition, the heat produced by the internal friction brake during forced silking may set the upper limit of forced silking speed.


Subject(s)
Silk/chemistry , Spiders/physiology , Animals , Tensile Strength
15.
Proc Biol Sci ; 271(1536): 291-9, 2004 Feb 07.
Article in English | MEDLINE | ID: mdl-15058441

ABSTRACT

We performed mechanical tests on a matrix-free keratin model-hagfish slime threads-to test the hypothesis that intermediate filaments (IFs) in hydrated hard alpha-keratins are maintained in a partly dehydrated state. This hypothesis predicts that dry IFs should possess mechanical properties similar to the properties of hydrated hard alpha-keratins, and should swell more than hard alpha-keratins in water. Mechanical and swelling measurements of hagfish threads were consistent with both of these predictions, suggesting that an elastomeric keratin matrix resists IF swelling and keeps IF stiffness and yield stress high. The elastomeric nature of the matrix is indirectly supported by the inability of matrix-free IFs (i.e. slime threads) to recover from post-yield deformation. We propose a general conceptual model of the structural mechanics of IF-based materials that predicts the effects of hydration and cross-linking on stiffness, yield stress and extensibility.


Subject(s)
Hagfishes/metabolism , Intermediate Filaments/chemistry , Keratins/chemistry , Models, Chemical , Water/metabolism , Animals , Biomechanical Phenomena , Intermediate Filaments/metabolism
16.
Biopolymers ; 70(4): 445-55, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14648756

ABSTRACT

Processes involving self-assembly of monomeric units into organized polymeric arrays are currently the subject of much attention, particularly in the areas of nanotechnology and biomaterials. One biological example of a protein polymer with potential for self-organization is elastin. Elastin is the extracellular matrix protein that imparts the properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Tropoelastin, the approximately 70 kDa soluble monomeric form of elastin, is highly nonpolar in character, consisting essentially of 34 alternating hydrophobic and crosslinking domains. Crosslinking domains contain the lysine residues destined to form the covalent intermolecular crosslinks that stabilize the polymer. We and others have suggested that the hydrophobic domains are sites of interactions that contribute to juxtaposition of lysine residues in preparation for crosslink formation. Here, using recombinant polypeptides based on sequences in human elastin, we demonstrate that as few as three hydrophobic domains flanking two crosslinking domains are sufficient to support a self-assembly process that aligns lysines for zero-length crosslinking, resulting in formation of the crosslinks of native elastin. This process allows fabrication of a polymeric matrix with solubility and mechanical properties similar to those of native elastin.


Subject(s)
Biocompatible Materials/chemistry , Elastin/metabolism , Peptides/metabolism , Recombinant Proteins/chemistry , Biocompatible Materials/metabolism , Deamination , Elastin/genetics , Elastin/ultrastructure , Humans , Lysine/metabolism , Microscopy, Electron , Oxidation-Reduction , Peptides/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
17.
J Exp Biol ; 206(Pt 19): 3311-26, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12939364

ABSTRACT

The juxtaposition of heart and gills in teleost fish means that the Windkessel function characteristic of the whole mammalian arterial tree has to be subserved by the extremely short ventral aorta and bulbus arteriosus. Over the functional pressure range, arteries from blue marlin (Makaira nigricans) and yellowfin tuna (Thunnus albacares) have J-shaped pressure-volume (P-V) loops, while bulbi from the same species have r-shaped P-V loops, with a steep initial rise followed by a compliant plateau phase. The steep initial rise in pressure is due to the geometry of the lumen. The interactions between radius, pressure and tension require a large initial pressure to open the bulbar lumen for flow. The plateau is due to the unique organization of the bulbar wall. The large elastin:collagen ratio, limited amount of collagen arranged circumferentially, lack of elastin lamellae and low hydrophobicity of the elastin itself all combine to lower stiffness, increase extensibility and allow efficient recoil. Even though the modulus of bulbus material is much lower than that of an artery, at large volumes the overall stiffness of the bulbus increases rapidly. The morphological features that give rise to the special inflation characteristics of the bulbus help to extend flow and maintain pressure during diastole.


Subject(s)
Aorta/physiology , Heart/physiology , Hemodynamics/physiology , Perciformes/anatomy & histology , Tuna/anatomy & histology , Animals , Aorta/ultrastructure , Biomechanical Phenomena , Blood Pressure , Collagen/physiology , Collagen/ultrastructure , Diastole/physiology , Elastin/physiology , Histological Techniques , Microscopy, Electron , Myocardium/ultrastructure , Perciformes/physiology , Tuna/physiology
18.
J Exp Biol ; 206(Pt 19): 3327-35, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12939365

ABSTRACT

The bulbus arteriosus of the teleost heart possesses a static inflation curve that is r-shaped over the in vivo pressure range. To examine the possible significance of this in living animals, we recorded arterial blood pressure from anaesthetized yellowfin tuna and utilized a video dimensional analyser to simultaneously record changes in bulbar diameter. By plotting the changes in pressure against the changes in diameter, it was possible to create dynamic pressure-diameter (P-D) loops as well as calculate the instantaneous volume changes within the bulbus. The dynamic P-D loops showed the same features exhibited by static inflation. When nearly empty, a small stroke volume caused a large increase in blood pressure, while around systolic pressure large changes in volume resulted in small changes in pressure. We conclude that these features allow the bulbus to maintain ventral aortic flows and pressures over a large range of volumes.


Subject(s)
Aorta/physiology , Heart/physiology , Myocardial Contraction/physiology , Tuna/anatomy & histology , Vasoconstriction/physiology , Vasodilation/physiology , Animals , Biomechanical Phenomena , Blood Pressure , Regional Blood Flow , Tuna/physiology
19.
Biophys J ; 85(3): 2015-27, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12944314

ABSTRACT

Intermediate filaments (IFs) impart mechanical integrity to cells, yet IF mechanics are poorly understood. It is assumed that IFs in cells are as stiff as hard alpha-keratin, F-actin, and microtubules, but the high bending flexibility of IFs and the low stiffness of soft alpha-keratins suggest that hydrated IFs may be quite soft. To test this hypothesis, we measured the tensile mechanics of the keratin-like threads from hagfish slime, which are an ideal model for exploring the mechanics of IF bundles and IFs because they consist of tightly packed and aligned IFs. Tensile tests suggest that hydrated IF bundles possess low initial stiffness (E(i) = 6.4 MPa) and remarkable elasticity (up to strains of 0.34), which we attribute to soft elastomeric IF protein terminal domains in series with stiffer coiled coils. The high tensile strength (180 MPa) and toughness (130 MJ/m(3)) of IF bundles support the notion that IFs lend mechanical integrity to cells. Their long-range elasticity suggests that IFs may also allow cells to recover from large deformations. X-ray diffraction and congo-red staining indicate that post-yield deformation leads to an irreversible alpha-->beta conformational transition in IFs, which leads to plastic deformation, and may be used by cells as a mechanosensory cue.


Subject(s)
Hagfishes/physiology , Intermediate Filaments/chemistry , Animals , Biophysical Phenomena , Biophysics , Coloring Agents/pharmacology , Congo Red/pharmacology , Entropy , Intermediate Filaments/physiology , Keratins/chemistry , Models, Statistical , Protein Conformation , Protein Structure, Secondary , Seawater , Tensile Strength , Thermodynamics , Water/chemistry , X-Ray Diffraction
20.
Philos Trans R Soc Lond B Biol Sci ; 357(1418): 121-32, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11911769

ABSTRACT

The term 'elastic protein' applies to many structural proteins with diverse functions and mechanical properties so there is room for confusion about its meaning. Elastic implies the property of elasticity, or the ability to deform reversibly without loss of energy; so elastic proteins should have high resilience. Another meaning for elastic is 'stretchy', or the ability to be deformed to large strains with little force. Thus, elastic proteins should have low stiffness. The combination of high resilience, large strains and low stiffness is characteristic of rubber-like proteins (e.g. resilin and elastin) that function in the storage of elastic-strain energy. Other elastic proteins play very different roles and have very different properties. Collagen fibres provide exceptional energy storage capacity but are not very stretchy. Mussel byssus threads and spider dragline silks are also elastic proteins because, in spite of their considerable strength and stiffness, they are remarkably stretchy. The combination of strength and extensibility, together with low resilience, gives these materials an impressive resistance to fracture (i.e. toughness), a property that allows mussels to survive crashing waves and spiders to build exquisite aerial filters. Given this range of properties and functions, it is probable that elastic proteins will provide a wealth of chemical structures and elastic mechanisms that can be exploited in novel structural materials through biotechnology.


Subject(s)
Biomechanical Phenomena , Extracellular Matrix Proteins/chemistry , Animals , Bivalvia/chemistry , Collagen/chemistry , Elasticity , Elastin/chemistry , Insect Proteins/chemistry , Silk , Spiders/chemistry , Tendons/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...