Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur J Neurol ; 31(1): e16048, 2024 01.
Article in English | MEDLINE | ID: mdl-37641505

ABSTRACT

BACKGROUND AND PURPOSE: Prior studies reported conflicting findings regarding the association of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis with measures of brain health. We examined whether NAFLD and liver fibrosis are associated with structural brain imaging measures in middle- and old-age adults. METHODS: In this cross-sectional study among dementia- and stroke-free individuals, data were pooled from the Offspring and Third Generation cohorts of the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Study of Health in Pomerania. NAFLD was assessed through abdominal imaging. Transient hepatic elastography (FibroScan) was used to assess liver fibrosis in FHS and RS. Linear regression models were used to explore the relation of NAFLD and liver fibrosis with brain volumes, including total brain, gray matter, hippocampus, and white matter hyperintensities, adjusting for potential confounders. Results were combined using fixed effects meta-analysis. RESULTS: In total, 5660 and 3022 individuals were included for NAFLD and liver fibrosis analyses, respectively. NAFLD was associated with smaller volumes of total brain (ß = -3.5, 95% confidence interval [CI] = -5.4 to -1.7), total gray matter (ß = -1.9, 95% CI = -3.4 to -0.3), and total cortical gray matter (ß = -1.9, 95% CI = -3.7 to -0.01). In addition, liver fibrosis (defined as liver stiffness measure ≥8.2 kPa) was related to smaller total brain volumes (ß = -7.3, 95% CI = -11.1 to -3.5). Heterogeneity between studies was low. CONCLUSIONS: NAFLD and liver fibrosis may be directly related to brain aging. Larger and prospective studies are warranted to validate these findings and identify liver-related preventive strategies for neurodegeneration.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/complications , Cross-Sectional Studies , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/complications , Brain/diagnostic imaging
2.
Article in English | MEDLINE | ID: mdl-37848203

ABSTRACT

Microbial challenge in-use studies are performed to evaluate the potential for microbial proliferation in preservative-free single dose biological products after first puncture and potential accidental contamination during dose preparation (e.g. reconstitution, dilution) and storage. These studies, in addition to physicochemical in-use stability assessments, are used as part of product registration to define in-use hold times in Prescribing Information and in the pharmacy manual in the case of clinical products. There are no formal guidance documents describing regulator expectations on how to conduct microbial challenge in-use studies and interpret microbial data to assign in-use storage hold-times. In lieu of guidance, US Food and Drug Administration (FDA) regulators have authored publications and presentations describing regulator expectations. Insufficient or unavailable microbial challenge data can result in shortened in-use hold times, thus microbial challenge data enables flexibility for health care providers (HCPs) and patients, while ensuring patient safety. A cross-industry/FDA in-use microbial working group was formed through the Innovation & Quality (IQ) Consortium to gain alignment among industry practice and regulator expectations. The working group assessed regulatory guidance, current industry practice via a blinded survey of IQ Consortium member companies, and scientific rationale to align on recommendations for experimental design, execution of microbial challenge in-use studies, and a decision tree for microbial data interpretation to assign in-use hold times. Besides the study execution and data interpretation, additional considerations are discussed including use of platform data for clinical stage products, closed system transfer devices (CSTDs), transport of dose solutions, long infusion times, and the use of USP <797> by HCPs for preparing sterile drugs for administration. The recommendations provided in this manuscript will help streamline biological product development, ensure consistency on assignment of in-use hold times in biological product labels across industry, and provide maximum allowable flexibility to HCPs and patients, while ensuring patient safety.

3.
Sci Rep ; 13(1): 13622, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604954

ABSTRACT

A bidirectional communication exists between the brain and the gut, in which the gut microbiota influences cognitive function and vice-versa. Gut dysbiosis has been linked to several diseases, including Alzheimer's disease and related dementias (ADRD). However, the relationship between gut dysbiosis and markers of cerebral small vessel disease (cSVD), a major contributor to ADRD, is unknown. In this cross-sectional study, we examined the connection between the gut microbiome, cognitive, and neuroimaging markers of cSVD in the Framingham Heart Study (FHS). Markers of cSVD included white matter hyperintensities (WMH), peak width of skeletonized mean diffusivity (PSMD), and executive function (EF), estimated as the difference between the trail-making tests B and A. We included 972 FHS participants with MRI scans, neurocognitive measures, and stool samples and quantified the gut microbiota composition using 16S rRNA sequencing. We used multivariable association and differential abundance analyses adjusting for age, sex, BMI, and education level to estimate the association between gut microbiota and WMH, PSMD, and EF measures. Our results suggest an increased abundance of Pseudobutyrivibrio and Ruminococcus genera was associated with lower WMH and PSMD (p values < 0.001), as well as better executive function (p values < 0.01). In addition, in both differential and multivariable analyses, we found that the gram-negative bacterium Barnesiella intestinihominis was strongly associated with markers indicating a higher cSVD burden. Finally, functional analyses using PICRUSt implicated various KEGG pathways, including microbial quorum sensing, AMP/GMP-activated protein kinase, phenylpyruvate, and ß-hydroxybutyrate production previously associated with cognitive performance and dementia. Our study provides important insights into the association between the gut microbiome and cSVD, but further studies are needed to replicate the findings.


Subject(s)
Cerebral Small Vessel Diseases , Dysbiosis , Humans , Cross-Sectional Studies , RNA, Ribosomal, 16S , Bacteria , AMP-Activated Protein Kinases
4.
J Alzheimers Dis ; 90(3): 1073-1083, 2022.
Article in English | MEDLINE | ID: mdl-36213999

ABSTRACT

BACKGROUND: Previous studies suggest poor pulmonary function is associated with increased burden of cerebral white matter hyperintensities and brain atrophy among elderly individuals, but the results are inconsistent. OBJECTIVE: To study the cross-sectional associations of pulmonary function with structural brain variables. METHODS: Data from six large community-based samples (N = 11,091) were analyzed. Spirometric measurements were standardized with respect to age, sex, height, and ethnicity using reference equations of the Global Lung Function Initiative. Associations of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and their ratio FEV1/FVC with brain volume, gray matter volume, hippocampal volume, and volume of white matter hyperintensities were investigated using multivariable linear regressions for each study separately and then combined using random-effect meta-analyses. RESULTS: FEV1 and FVC were positively associated with brain volume, gray matter volume, and hippocampal volume, and negatively associated with white matter hyperintensities volume after multiple testing correction, with little heterogeneity present between the studies. For instance, an increase of FVC by one unit was associated with 3.5 ml higher brain volume (95% CI: [2.2, 4.9]). In contrast, results for FEV1/FVC were more heterogeneous across studies, with significant positive associations with brain volume, gray matter volume, and hippocampal volume, but not white matter hyperintensities volume. Associations of brain variables with both FEV1 and FVC were consistently stronger than with FEV1/FVC, specifically with brain volume and white matter hyperintensities volume. CONCLUSION: In cross-sectional analyses, worse pulmonary function is associated with smaller brain volumes and higher white matter hyperintensities burden.


Subject(s)
Lung , Magnetic Resonance Imaging , Humans , Aged , Forced Expiratory Volume , Cross-Sectional Studies , Lung/diagnostic imaging , Brain/diagnostic imaging
5.
J Pharm Sci ; 111(12): 3275-3286, 2022 12.
Article in English | MEDLINE | ID: mdl-36116524

ABSTRACT

A new type of lamellae-like particles was observed in protein based liquid therapeutic protein drug product (DP) packaged in standard (STD) and delamination controlled (DC) Type IB glass vials stored at 2-8°C as early as two weeks after manufacture. These particles were determined to be remarkably different from lamellae in not only in their chemical composition, but in the mechanism by which these are formed. The lamellae-like particles were an ultra-thin (< 200 nm) film, appeared curled, sheet-like, folded with no defined edges identified as lamellar silica composed of silica and polysorbate 80 (PS 80). It was also observed that the lamellar silica particles, when formed in a given drug product lot, not only were observed in a small percentage of vials, but also remained at low (≤ 5) numbers in affected vials, often decreasing in number over time. This is in contrast to the large number of commonly reported glass lamellae (hundreds per vial) observed in vials prone to delamination with a glass vial interior showing a delaminated inner surface. In this case study, evidence from low Si leachable levels in solution and various surface analytical techniques supported the conclusion that there was neither delamination nor early signs of glass delamination like reaction zones occurring in those impacted vials, regardless. A mechanism for particle formation was hypothesized and experimentally confirmed. Lamellar silica particles are composed of an admixture of condensed silica and PS 80 deposited on the interior walls of glass vials, which form and may be released into solution over time. The root cause was determined to be conditions present during preparation of the vials for drug product filling, specifically the vial washing and depyrogenation steps. These conditions are known to make glass vials prone to delamination; in this case study, they resulted in interactions between the glass and PS 80 present in the formulation. Incomplete drying of the glass vials during depyrogenation in closed ovens was confirmed as the contributing factors that led to lamellar silica particle formation via the studies of silicate spiked into the DC Type IB glass vials filled with the mAb DP in which lamellar silica particles were observed. Prevention of lamellar silica particles formation was successfully achieved through optimization of the duration and pressure of air blow during the vial washing and drying process in a depyrogenation oven. This was evidenced by the lack of appearance of the lamellar silica particles over 48 months for the DP lots filled post optimization. Additionally, the formation of lamellar silica was also mitigated by changing the vial washing process from a closed oven process to a tunnel process, which allowed for improved air flow and hence better drying of the vial primary container.


Subject(s)
Drug Packaging , Silicon Dioxide , Drug Packaging/methods , Glass/chemistry , Polysorbates , Pharmaceutical Preparations
6.
Sci Rep ; 11(1): 12613, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131204

ABSTRACT

Secondary injury following cortical stroke includes delayed gliosis and eventual neuronal loss in the thalamus. However, the effects of aging and the potential to ameliorate this gliosis with NMDA receptor (NMDAR) antagonism are not established. We used the permanent distal middle cerebral artery stroke model (pdMCAO) to examine secondary thalamic injury in young and aged mice. At 3 days post-stroke (PSD3), slight microgliosis (IBA-1) and astrogliosis (GFAP) was evident in thalamus, but no infarct. Gliosis increased dramatically through PSD14, at which point degenerating neurons were detected. Flow cytometry demonstrated a significant increase in CD11b+/CD45int microglia (MG) in the ipsilateral thalamus at PSD14. CCR2-RFP reporter mouse further demonstrated that influx of peripheral monocytes contributed to the MG/Mϕ population. Aged mice demonstrated reduced microgliosis and astrogliosis compared with young mice. Interestingly, astrogliosis demonstrated glial scar-like characteristics at two years post-stroke, but not by 6 weeks. Lastly, treatment with memantine (NMDAR antagonist) at 4 and 24 h after stroke significantly reduced gliosis at PSD14. These findings expand our understanding of gliosis in the thalamus following cortical stroke and demonstrate age-dependency of this secondary injury. Additionally, these findings indicate that delayed treatment with memantine (an FDA approved drug) provides significant reduction in thalamic gliosis.


Subject(s)
Gliosis/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Memantine/pharmacology , Stroke/drug therapy , Aging/drug effects , Aging/pathology , Animals , Brain Ischemia/complications , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Disease Models, Animal , Gliosis/etiology , Gliosis/pathology , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Mice , Neuroprotective Agents/pharmacology , Stroke/complications , Thalamus/drug effects , Thalamus/pathology
7.
Neuroscientist ; 27(6): 668-684, 2021 12.
Article in English | MEDLINE | ID: mdl-33238806

ABSTRACT

Cerebral hemorrhage, a devastating subtype of stroke, is often caused by hypertension and cerebral amyloid angiopathy (CAA). Pathological evidence of CAA is detected in approximately half of all individuals over the age of 70 and is associated with cortical microinfarcts and cognitive impairment. The underlying pathophysiology of CAA is characterized by accumulation of pathogenic amyloid ß (Aß) fragments of amyloid precursor protein in the cerebral vasculature. Vascular deposition of Aß damages the vessel wall, results in blood-brain barrier (BBB) leakiness, vessel occlusion or rupture, and leads to hemorrhages and decreased cerebral blood flow that negatively affects vessel integrity and cognitive function. Currently, the main hypothesis surrounding the mechanism of CAA pathogenesis is that there is an impaired clearance of Aß peptides, which includes compromised perivascular drainage as well as dysfunction of BBB transport. Also, the immune response in CAA pathogenesis plays an important role. Therefore, the mechanism by which Aß vascular deposition occurs is crucial for our understanding of CAA pathogenesis and for the development of potential therapeutic options.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Blood-Brain Barrier/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , Humans
8.
Mol Cell Neurosci ; 108: 103542, 2020 10.
Article in English | MEDLINE | ID: mdl-32841720

ABSTRACT

The extracellular accumulation of amyloid ß (Aß) fragments of amyloid precursor protein (APP) in brain parenchyma is a pathological hallmark of Alzheimer's disease (AD). APP can be cleaved into Aß on late endosomes/multivesicular bodies (MVBs). E3 ubiquitin ligases have been linked to Aß production, but specific E3 ligases associated with APP ubiquitination that may affect targeting of APP to endosomes have not yet been described. Using cultured cortical neurons isolated from rat pups, we reconstituted APP movement into the internal vesicles (ILVs) of MVBs. Loss of endosomal sorting complexes required for transport (ESCRT) components inhibited APP movement into ILVs and increased endosomal Aß42 generation, implying a requirement for APP ubiquitination. We identified an ESCRT-binding and APP-interacting endosomal E3 ubiquitin ligase, ubiquitination factor E4B (UBE4B) that regulates APP ubiquitination. Depleting UBE4B in neurons inhibited APP ubiquitination and internalization into MVBs, resulting in increased endosomal Aß42 levels and increased neuronal secretion of Aß42. When we examined AD brains, we found levels of the UBE4B-interacting ESCRT component, hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), were significantly decreased in AD brains. These data suggest that ESCRT components critical for membrane protein sorting in the endocytic pathway are altered in AD. These results indicate that the molecular machinery underlying endosomal trafficking of APP, including the ubiquitin ligase UBE4B, regulates Aß levels and may play an essential role in AD progression.


Subject(s)
Amyloid beta-Peptides/metabolism , Endosomes/metabolism , Neurons/metabolism , Peptide Fragments/metabolism , Ubiquitination , Animals , Cells, Cultured , Endosomal Sorting Complexes Required for Transport/metabolism , Female , HEK293 Cells , Humans , Male , Protein Transport , Rats , Secretory Vesicles/metabolism
9.
Exp Cell Res ; 372(1): 1-15, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30144444

ABSTRACT

Regulating the residence time of membrane proteins on the cell surface can modify their response to extracellular cues and allow for cellular adaptation in response to changing environmental conditions. The fate of membrane proteins that are internalized from the plasma membrane and arrive at the limiting membrane of the late endosome/multivesicular body (MVB) is dictated by whether they remain on the limiting membrane, bud into internal MVB vesicles, or bud outwardly from the membrane. The molecular details underlying the disposition of membrane proteins that transit this pathway and the mechanisms regulating these trafficking events are unclear. We established a cell-free system that reconstitutes budding of membrane protein cargo into internal MVB vesicles and onto vesicles that bud outwardly from the MVB membrane. Both budding reactions are cytosol-dependent and supported by Saccharomyces cerevisiae (yeast) cytosol. We observed that inward and outward budding from the MVB membrane are mechanistically distinct but may be linked, such that inhibition of inward budding triggers a re-routing of cargo from inward to outward budding vesicles, without affecting the number of vesicles that bud outwardly from MVBs.


Subject(s)
Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Intracellular Membranes/metabolism , Lysosomes/metabolism , Multivesicular Bodies/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/chemistry , Cell-Free System/chemistry , Cell-Free System/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/ultrastructure , Gene Expression Regulation , HeLa Cells , Humans , Intracellular Membranes/ultrastructure , Lysosomes/ultrastructure , Multivesicular Bodies/ultrastructure , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Transport , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Signal Transduction
10.
PDA J Pharm Sci Technol ; 67(4): 323-35, 2013.
Article in English | MEDLINE | ID: mdl-23872443

ABSTRACT

Storing protein formulations in the frozen state typically improves stability during long-term storage as a drug substance or as a drug product. The frozen state minimizes chemical degradation and physical instability. However, the frozen state is not an optimal storage condition for the glass vial itself. A significant issue was observed when small, flake-like pieces of glass particles (lamellae) appeared in vials containing thawed protein product. The occurrence of glass particles during freeze-thaw results in product rejection and potentially, adverse events. In recent years, glass flakes due to chemical delamination have been observed in parenteral liquid formulations after long-term storage, resulting in a number of product recalls. In this study, for the first time, glass delamination is reported in pharmaceutical glass vials containing frozen protein formulation, caused by a novel mechanism involving thermally-induced mechanical stress. In this article, a monoclonal antibody drug product in glass vials and the corresponding placebo vials were studied to identify the contributing factors from the freeze-thaw process, such as freezing temperature, the presence or absence of protein, and other handling conditions. Freezing temperature was found to be the most critical factor. Glass lamellae were only observed when the products were frozen to -70 °C, while freezing only to -30 °C did not cause any lamellae formation even after multiple freeze-thaw cycles. Protein concentration and the handling of the vials were also identified as contributing factors. A concentration gradient which formed after freeze-thaw induced a higher rate of lamellae occurrence in a subsequent freeze-thaw cycle compared to vials without the concentration gradient. Analyses by Fourier transform infrared spectroscopy and scanning electron microscopy/energy dispersive spectroscopy confirmed that the flake-like lamellae were thin, flat glass particles. Defects corresponding to the glass flakes were observed by scanning electron microscopy on the inner surface of the vials that contained lamellae. In addition, inductively coupled plasma mass spectrometry testing did not show elevated levels of silicon in the drug product solution, suggesting that the glass lamellae formed in the frozen vials was a local, event-based phenomenon rather than silica dissolution from the product contact surface or glass degradation caused by corrosive attack. These findings can be explained by the same thermally-induced mechanical stress which caused vial breakage. Frozen protein formulations contracted below -30 °C, causing an inward glass deformation and a subsequent rapid movement of the glass when the frozen plug of drug product solution separated from the vial inner surface at approximately -50 to -60 °C. The mechanical stress released during this separation caused vial breakage. The incidence of vial breakage increased with more concentrated product and higher fill volume-to-vial volume ratios. The same mechanism applies to lamellae formation. As the rapid surface separation occurred, small, thin pieces of glass were pulled from the glass surface by the frozen plug, and, as a result, glass lamellae particles appeared in the drug product solution after thawing. LAY ABSTRACT: In recent years, glass flakes have been observed in parenteral liquid formulations due to chemical delamination during long-term storage, resulting in a number of product recalls. In our study, we discovered a novel mechanism of glass delamination in vials containing frozen protein formulations. This glass delamination mechanism has never been reported before, and we believe this work will benefit the pharmaceutical scientific community, especially the biotechnology and parenteral drug industries. Storing protein formulations in the frozen state typically improves stability during long-term storage as a drug substance or as a drug product. The frozen state minimizes chemical degradation and physical instability. However, the frozen state is not an optimal storage condition for the glass vial itself. In this study, we observed that after thawing, small, flake-like pieces of glass particles (i.e., lamellae) appeared in vials containing frozen protein formulation. To investigate the root cause, we performed a series of freeze-thaw experiments and characterized the lamellae particles, the vial inner surface, and the elemental composition of the solution. The root cause was determined to be mechanical stress caused by thermal contraction of frozen protein formulations below -30 °C. This contraction caused an inward glass deformation on the vial sidewall and, subsequently, the glass vial surface abruptly separated from frozen protein formulation. Under this mechanical stress, small, thin glass pieces were peeled from the vial inner surface by the frozen formulation, causing lamellae formation. The experimental design and results leading to the discovery of the novel glass delamination mechanism are presented in detail in this article.


Subject(s)
Drug Packaging , Freezing , Chemistry, Pharmaceutical , Drug Stability , Freeze Drying , Glass/chemistry , Microscopy, Electron, Scanning , Pharmaceutical Solutions , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...