Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37511557

ABSTRACT

As the use of antioxidant compounds in the domains of health, nutrition and well-being is exponentially rising, there is an urgent need to quantify antioxidant power quickly and easily, ideally within living cells. We developed an Anti Oxidant Power in Yeast (AOPY) assay which allows for the quantitative measurement of the Reactive Oxygen Species (ROS) and free-radical scavenging effects of various molecules in a high-throughput compatible format. Key parameters for Saccharomyces cerevisiae were investigated, and the optimal values were determined for each of them. The cell density in the reaction mixture was fixed at 0.6; the concentration of the fluorescent biosensor (TO) was found to be optimal at 64 µM, and the strongest response was observed for exponentially growing cells. Our optimized procedure allows accurate quantification of the antioxidant effect in yeast of well-known antioxidant molecules: resveratrol, epigallocatechin gallate, quercetin and astaxanthin added in the culture medium. Moreover, using a genetically engineered carotenoid-producing yeast strain, we realized the proof of concept of the usefulness of this new assay to measure the amount of ß-carotene directly inside living cells, without the need for cell lysis and purification.


Subject(s)
Antioxidants , Saccharomyces cerevisiae , Antioxidants/pharmacology , Carotenoids/pharmacology , beta Carotene/pharmacology , Reactive Oxygen Species
2.
EMBO J ; 42(15): e113079, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37303231

ABSTRACT

Acetate, a major by-product of glycolytic metabolism in Escherichia coli and many other microorganisms, has long been considered a toxic waste compound that inhibits microbial growth. This counterproductive auto-inhibition represents a major problem in biotechnology and has puzzled the scientific community for decades. Recent studies have however revealed that acetate is also a co-substrate of glycolytic nutrients and a global regulator of E. coli metabolism and physiology. Here, we used a systems biology strategy to investigate the mutual regulation of glycolytic and acetate metabolism in E. coli. Computational and experimental analyses demonstrate that decreasing the glycolytic flux enhances co-utilization of acetate with glucose. Acetate metabolism thus compensates for the reduction in glycolytic flux and eventually buffers carbon uptake so that acetate, rather than being toxic, actually enhances E. coli growth under these conditions. We validated this mechanism using three orthogonal strategies: chemical inhibition of glucose uptake, glycolytic mutant strains, and alternative substrates with a natively low glycolytic flux. In summary, acetate makes E. coli more robust to glycolytic perturbations and is a valuable nutrient, with a beneficial effect on microbial growth.


Subject(s)
Escherichia coli , Glycolysis , Escherichia coli/metabolism , Acetates/metabolism , Carbon/metabolism , Biotechnology , Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...