Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Environ Contam Toxicol ; 84(4): 436-452, 2023 May.
Article in English | MEDLINE | ID: mdl-37097447

ABSTRACT

Sediment management along engineered river systems includes dredging operations and sediment deposition in the sea (capping) or on land. Thus, determining the ecotoxicological risk gradient associated with river sediments is critical. In this study, we investigated sediment samples along the Rhône River (France) and conducted environmental risk assessment tests with the idea to evaluate them in the future for deposit on soil. Based on an on-land deposit scenario, the capacity of the sediment samples from four sites (LDB, BER, GEC, and TRS) to support vegetation was evaluated by characterising the physical and chemical parameters (pH, conductivity, total organic carbon, grain size, C/N, potassium, nitrogen, and selected pollutants), including polychlorinated biphenyls (PCBs) and metal trace elements. All tested sediments were contaminated by metallic elements and PCBs as follows: LDB > GEC > TRS > BER, but only LDB had levels higher than the French regulatory threshold S1. Sediment ecotoxicity was then assessed using acute (plant germination and earthworm avoidance) and chronic (ostracod test and earthworm reproduction) bioassays. Two of the tested plant species, Lolium perenne (ray grass) and Cucurbita pepo (zucchini), were highly sensitive to sediment phytotoxicity. Acute tests also showed significant inhibition of germination and root growth, with avoidance by Eisenia fetida at the least contaminated sites (TRS and BER). Chronic bioassays revealed that LDB and TRS sediment were significantly toxic to E. fetida and Heterocypris incongruens (Ostracoda), and GEC sediment was toxic for the latter organism. In this on-land and spatialised deposit scenario, river sediment from the LDB site (Lake Bourget marina) presented the highest potential toxicity and required the greatest attention. However, low contamination levels can also lead to potential toxicity (as demonstrated for GEC and TRS site), underlining the importance of a multiple test approach for this scenario.


Subject(s)
Environmental Pollutants , Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/toxicity , Polychlorinated Biphenyls/analysis , Rivers/chemistry , Ecotoxicology , Soil , Water Pollutants, Chemical/analysis , Geologic Sediments
2.
Sci Total Environ ; 778: 146275, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714835

ABSTRACT

Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.


Subject(s)
Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Risk Assessment , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Environ Int ; 144: 106032, 2020 11.
Article in English | MEDLINE | ID: mdl-32861162

ABSTRACT

In European rivers, research and monitoring programmes have targeted metal pollution from bed and floodplain sediments since the mid-20th century by using various sampling and analysis protocols. We propose to characterise metal contamination trajectories since the 1960s based on the joint use of a large amount of data from dated cores and subsurface sediments along the Rhône River (ca. 512 km, Switzerland-France). For the reconstruction of spatio-temporal trends, enrichment factors (EF) and geo-accumulation (Igeo) approaches were compared. The latter index was preferred due to the recurrent lack of grain-size and lithogenic elements in the dataset. Local geochemical backgrounds were established near (1) the Subalps and (2) the Massif Central to consider the geological variability of the watershed. A high contamination (Igeo = 3-5) was found for Cd, Cu and Zn from upstream to downstream over the period 1980-2000. This pattern is consistent with long-term emissions from major cities and the nearby industrial areas of the Upper Rhône (Geneva, Arve Valley), and Middle Rhône (Lyon, Chemical Corridor, Gier Valley). Hotspots due to Cu and Zn leaching from vineyards, mining, and highway runoff were also identified, while Pb was especially driven by industrial sources. The recovery time of pollution in sediment varied according to the metals and was shorter upstream of Lyon (15-20 years) than downstream (30-40 years). More widely, it was faster on the Rhône than along other European rivers (e.g. Seine and Rhine). Finally, the ecotoxicological mixture risk of metal with Persistent Organic Pollutants (POPs) for sediment-dwelling organisms showed a medium "cocktail risk" dominated by metals upstream of Lyon, although it is enhanced due to POPs downstream, and southward to the delta and the Mediterranean Sea. Overall, this study demonstrates the heterogeneity of the contamination trends along large fluvial corridors such as the Rhône River.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , France , Geologic Sediments , Mediterranean Sea , Metals, Heavy/analysis , Switzerland , Water Pollutants, Chemical/analysis
4.
Int J Hyg Environ Health ; 224: 113437, 2020 03.
Article in English | MEDLINE | ID: mdl-31978733

ABSTRACT

In most cases, urban Wastewater Treatment Plants (WWTP) only partially abate pollutants occurring in the influent. Treated effluents can thus contain a complex mixture of ecotoxic pollutants, such as heavy metals, detergents, disinfectants, plasticizers, pharmaceuticals residues or pesticides. In this context, Ecotoxicological Risk Assessment (ERA) provide essential decision-making tools to public authorities for establishing environmental policies and conducting territorial planning. The present work aims to develop a territorial-scale ERA methodology using two complementary approaches based on a Risk Quotient (RQ) calculation: (1) the first, based on the risk linked to each individual pollutant (single substances ERA); (2) the second, considering all pollutants present, and the "cocktail effect" (mixture ERA). This research was performed at 33 urban WWTPs of in a highly urbanized part of France (Lyon area). Initial minimum, median and maximum pollutant concentrations in treated effluents were obtained from a literature review of physico-chemical analysis studies, to reconstitute "typical" effluents. The classical approach (single substances ERA) identified the riskiest substances (e.g. endocrine disruptors, as the Estrone with RQ up to 593.75), and showed the risks for each WWTP. The mixture ERA approach revealed new risks, which were not highlighted in the classical ERA approach, thus increasing the number of WWTPs identified as at risk. This study shows the importance of accounting for the cocktail effect, which is not considered in current regulatory decisions. Finally, this methodology allowed us to identify the riskiest situations (often medium sized WWTPs, releasing into small streams), that could worsen in the context of climate change.


Subject(s)
Environmental Monitoring , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Risk Assessment , Wastewater
5.
Chemosphere ; 217: 522-533, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30445397

ABSTRACT

Urban wet weather discharge (UWWD) management is an important issue. UWWD often represents a significant source of pollution in all aquatic bodies. The occurrence of this pollution is difficult to predict due to the variability of storm events and the unknown contents of urban watershed leached out by rain. Previous studies have tried to demonstrate the ecotoxic impact of UWWD. However, most of them merely highlight the limitations of classic monospecific bioassays, given the high dilution of micropollutants or the presence of nutrients masking toxic effects. Overcoming this problem is therefore of great interest. In this study, we demonstrated the utility of a battery of biomarkers (e.g. membrane permeability, chlorophyll fluorescence, esterase and alkaline phosphatase activities) on the microalgae Chlorella vulgaris to detect the toxic effects of 7 UWWD samples after short exposures (2 and 24 h). These biomarkers are linked to microalgal life traits. Complementarily, monospecific bioassays were carried on Pseudokirchneriella subcapitata, Chlorella vulgaris, Daphnia magna and Heterocypris incongruens to compare their sensitivity to the UWWD samples. No toxic effect was detected in any of the bioassays. Yet, algal biomarkers indicated a disturbance in microalgae physiology, and particularly a perturbation of chlorophyll fluorescence, which was observed in all of the samples tested. While algal membrane permeability was affected by only one UWWD, these two enzymatic activities were stimulated or inhibited depending on the sample. Finally, this study demonstrates the sensitivity of algal biomarkers and the need to develop new, fruitful approaches to characterizing UWWD toxicity.


Subject(s)
Biomarkers/chemistry , Environmental Monitoring/methods , Environmental Pollution/analysis , Microalgae/pathogenicity , Water Pollutants, Chemical/chemistry , Animals , Biological Assay , Water Pollutants, Chemical/analysis
6.
Biosens Bioelectron ; 117: 669-677, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30007197

ABSTRACT

A critical need exists to develop rapid, in situ, and real-time tools to monitor the impact of pollution discharge toxicity on aquatic ecosystems. The present paper deals with the development of a novel, simple-to-use, low-cost, portable, and user-friendly algal biosensor. In this study, a complete and autonomous portable fluorimeter was developed to assess the A-chlorophyll fluorescence of microalgae, inserted by capillarity into low-cost and disposable xurography-based microfluidic chips. Three microalgae populations were used to develop the biosensor: Chlorella vulgaris, Pseudokirchneriella subcapitata, and Chlamydomonas reinhardtii. Biosensor feasibility and sensitivity parameters, such as algal concentration and light intensity, were optimized beforehand to calibrate the biosensor sensitivity with Diuron, a pesticide known to be very toxic for microalgae. Finally, the biosensor was employed in 10 aqueous urban polluted samples (7 urban wet-weather discharges and 3 wastewater) in order to prove its reliability, reproducibility, and performance in the detection of toxic discharges in the field.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Chlorophyta/physiology , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Microfluidics , Water Pollutants, Chemical/analysis , Chlorophyta/drug effects , Cities , Diuron/analysis , Diuron/toxicity , Reproducibility of Results
7.
Article in English | MEDLINE | ID: mdl-29120696

ABSTRACT

Standardized ecotoxicity bioassays show some limits to assess properly long-term residual toxicity of complex mixture of pollutants often present at low concentration, such as stormwaters. Among invertebrate organisms used for ecotoxicity testing, the microcrustacean Ceriodaphnia dubia (C. dubia) is considered as one of the most sensitive, especially regarding reproduction impairment as a toxicity endpoint. Consequently, this work explores the interest to perform a multigenerational assay based on the study of the reproduction of C. dubia to assess long-term ecotoxicity of complex mixture, using stormwater samples. With this in mind, a battery of standardized bioassays (Daphnia magna mobility, Pseudokirchneriella subcapitata population growth, Heterocypris incongruens growth and one generation C. dubia reproduction inhibition assays) was performed in parallel to a three generation C. dubia reproduction inhibition assay on 2 stormwater samples. Results highlighted that while all standardized bioassays failed to reveal residual toxicity in the stormwater samples, the C. dubia multigenerational assay exhibited an higher sensitivity than the previous ones. No adverse effect was observed for the first exposed generation, but an increase in mortality and a reproduction disturbance was obtained in the second and third exposed generation depending of the sample. Further experiments are now needed to optimize the exposure protocol of this multigenerational assay.


Subject(s)
Biological Assay/methods , Cladocera/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Assay/instrumentation , Cities , Cladocera/physiology , Reproduction/drug effects
8.
Environ Sci Process Impacts ; 19(9): 1150-1168, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28691727

ABSTRACT

Urbanization has led to considerable pressure on urban/suburban aquatic ecosystems. Urban Wet Weather Discharges (UWWD) during rainfall events are a major source of pollutants leached onto and into urban surfaces and sewers, which in turn affect aquatic ecosystems. We assessed the ecotoxicity of the different compounds identified in UWWD and identified the hazard represented by each of them. To this end, hazard quotient (HQ) values were calculated for each compound detected in UWWD based on their predicted no effect concentration (PNEC) values and their maximum measured effluent concentrations (MECmax) found in the dissolved part of UWWD. For the 207 compounds identified in UWWD, sufficient data existed for 165 of them to calculate their PNEC. The ecotoxicity of these compounds varied greatly. Pesticides represented a high proportion of the wide variety of hazardous compounds whose HQ values were calculated (94 HQ values), and they were among the most hazardous pollutants (HQ > 1000) transported by stormwater. The hazard of combined sewer overflows (CSO) was linked mainly to heavy metals and pharmaceutical compounds. Consequently, the monitoring of these pollutants should be a priority in the future. The hazard level of certain pollutants could have been underestimated due to their adsorption onto particles, leading to their low concentration in the dissolved phase of UWWD. Hence, an in-depth study of these pollutants will be required to clarify their effects on aquatic organisms.


Subject(s)
Aquatic Organisms/drug effects , Environmental Monitoring/methods , Hazardous Substances/toxicity , Rain , Water Pollutants, Chemical/toxicity , Ecotoxicology , Hazardous Substances/analysis , Metals, Heavy/analysis , Metals, Heavy/toxicity , Pesticides/analysis , Pesticides/toxicity , Urbanization , Water Pollutants, Chemical/analysis
9.
Water Res ; 89: 330-54, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26720196

ABSTRACT

Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction.


Subject(s)
Environmental Monitoring/methods , Water Pollution, Chemical/adverse effects , Weather , Aquatic Organisms , Biosensing Techniques , Cities , Ecotoxicology , Water Pollutants, Chemical/toxicity
10.
Environ Sci Pollut Res Int ; 23(4): 3008-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26400245

ABSTRACT

A mixture of urban and hospital effluents (50% v/v) was evaluated for ecotoxicity with an advanced bioassay battery. Mixed effluents were tested before any treatment, after biological treatment alone, and after biological treatment followed by a tertiary ozonation (15 mg O3/L). Laying a high value on the continuance of organisms' fitness, essential to preserve a healthy receiving ecosystem, the main objective of this study was to combine normalized bioassays with newly developed in vivo and in vitro tests in order to assess alteration of embryo development, growth and reproduction, as well as genotoxic effects in aquatic organisms exposed to complex wastewater effluents. Comparison of the bioassays sensitivity was considered. Contrary to the lack of toxicity observed with normalized ecotoxicity tests, endpoints measured on zebrafish embryos such as developmental abnormalities and genotoxicity demonstrated a residual toxicity in wastewater both after a biological treatment followed or not by a tertiary O3 treatment. However, the ozonation step allowed to alleviate the residual endocrine disrupting potential measure in the biologically treated effluent. This study shows that normalized bioassays are not sensitive enough for the ecotoxicological evaluation of wastewaters and that there is a great need for the development of suitable sensitive bioassays in order to characterize properly the possible residual toxicity of treated effluents.


Subject(s)
Ecotoxicology , Endocrine Disruptors/analysis , Ozone/chemistry , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods , Animals , Biodegradation, Environmental , Biological Assay/methods , Cell Line , Crustacea/drug effects , Crustacea/growth & development , Embryo, Nonmammalian/drug effects , Endocrine Disruptors/toxicity , Humans , Pilot Projects , Receptors, Estrogen/metabolism , Rotifera/drug effects , Rotifera/growth & development , Toxicity Tests/methods , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development
11.
Environ Sci Pollut Res Int ; 23(1): 9-13, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26201654

ABSTRACT

Anthropic activities generate contaminants, as pesticides and other pollutants, in the aquatic environment which present a real threat to ecosystems and human health. Thus, monitoring tools become essential for water managers to detect these chemicals before the occurrence of adverse effects. In this aim, algal cell biosensors, based on photosystem II activity measurement, have been designed for several years in previous studies. In this work, we study a new immobilization technique of algal cells in the aim of improving the performance of these biosensors. Immobilization was here achieved by encapsulation in a hybrid alginate/silica translucid hydrogel. The feasibility of this process was here assessed, and the biosensor designed was tested on the detection of chemicals in urban rainwaters.


Subject(s)
Biosensing Techniques , Environmental Monitoring/methods , Hydrogel, Polyethylene Glycol Dimethacrylate , Biosensing Techniques/methods , Cells, Immobilized , Ecosystem , Feasibility Studies , Humans , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...