Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842688

ABSTRACT

Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC-MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.

2.
Talanta ; 257: 124324, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36780779

ABSTRACT

This review provides an overview of the online hyphenation of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with separation methods to date. The online coupling between separation techniques (gas and liquid chromatography, capillary electrophoresis) and FT-ICR MS essentially raises questions of compromise and is not look as straightforward as hyphenation with other analyzers (QTOF-MS for instance). FT-ICR MS requires time to reach its highest resolving power and accuracy in mass measurement capabilities whereas chromatographic and electrophoretic peaks are transient. In many applications, the strengths and the weaknesses of each technique are balanced by their hyphenation. Untargeted "Omics" (e.g. proteomics, metabolomics, petroleomics, …) is one of the main areas of application for FT-ICR MS hyphenated to online separation techniques because of the complexity of the sample. FT-ICR MS achieves the required high mass measurement accuracy to determine accurate molecular formulae and resolution for isobar distinction. Meanwhile separation techniques highlight isomers and reduce the ion suppression effects extending the dynamic range. Even if the implementation of FT-ICR MS hyphenated with online separation methods is a little trickier (the art of compromise), this review shows that it provides unparalleled results to the scientific community (the art of the possible), along with raising the issue of its future in the field with the relentless technological progress.

3.
Anal Chem ; 95(2): 1608-1617, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36598775

ABSTRACT

As RNA post-transcriptional modifications are of growing interest, several methods were developed for their characterization. One of them established for their identification, at the nucleosidic level, is the hyphenation of separation methods, such as liquid chromatography or capillary electrophoresis, to tandem mass spectrometry. However, to our knowledge, no software is yet available for the untargeted identification of RNA post-transcriptional modifications from MS/MS data-dependent acquisitions. Thus, very long and tedious manual data interpretations are required. To meet the need of easier and faster data interpretation, a new user-friendly search engine, called Nucleos'ID, was developed for CE-MS/MS and LC-MS/MS users. Performances of this new software were evaluated on CE-MS/MS data from nucleoside analyses of already well-described Saccharomyces cerevisiae transfer RNA and Bos taurus total tRNA extract. All samples showed great true positive, true negative, and false discovery rates considering the database size containing all modified and unmodified nucleosides referenced in the literature. The true positive and true negative rates obtained were above 0.94, while the false discovery rates were between 0.09 and 0.17. To increase the level of sample complexity, untargeted identification of several RNA modifications from Pseudomonas aeruginosa 70S ribosome was achieved by the Nucleos'ID search following CE-MS/MS analysis.


Subject(s)
Nucleosides , Tandem Mass Spectrometry , Animals , Cattle , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Nucleosides/analysis , Search Engine , RNA, Transfer
4.
Article in English | MEDLINE | ID: mdl-35917777

ABSTRACT

As part of RNA characterization, the identification of post-transcriptional modifications can be performed using hyphenation of separation methods with mass spectrometry. To identify RNA modifications with those methods, a first total digestion followed by a dephosphorylation step are usually required to reduce RNA to nucleosides. Even though effective digestion and dephosphorylation are essential to avoid further complications in analysis and data interpretation, to our knowledge, no standard protocol is yet referenced in the literature. Therefore, the aim of this work is to optimize the dephosphorylation step using a total extract of transfer RNA (tRNA)1 from B. taurus as a model and to determine and fix two protocols, leading to complete dephosphorylation, based on time and bacterial alkaline phosphatase (BAP)2 consumptions. Capillary electrophoresis-tandem mass spectrometry (CE-MS/MS) was used to estimate the dephosphorylation efficiency of both protocols on many canonical and modified nucleotides. For a timesaving protocol, we established that full dephosphorylation was obtained after a 4-hour incubation at 37 °C with 7.5 U of BAP for 1 µg of tRNA. And for a BAP-saving protocol, we established that full dephosphorylation was obtained 3.0 U of BAP after an overnight incubation at 37 °C. Both protocols are suitable for quantitative analyses as no loss of analytes is expected. Moreover, they can be widely used for all other RNA classes, including messenger RNA or ribosomal RNA.


Subject(s)
RNA , Tandem Mass Spectrometry , Nucleosides/analysis , Nucleotides , RNA/chemistry , RNA, Transfer , Tandem Mass Spectrometry/methods
5.
Methods Mol Biol ; 2531: 49-59, 2022.
Article in English | MEDLINE | ID: mdl-35941477

ABSTRACT

Homemade capillaries are a very common practice for the users of capillary electrophoresis (CE), notably in CE-UV. With the advent of the capillary electrophoresis-mass spectrometry coupling since the end of the 1980s, several interfaces have been developed. Among those interfaces, the porous tip sprayer allows great sensitivity at nano flow rates and has been used in numerous applications over the past few years. However, the homemade implementation of a suitable capillary for the porous tip sprayer is more challenging. The porous tip is created by etching the bare-fused silica capillary with hydrofluoric acid. Here we describe the complete process of etching bare-fused silica capillaries, from length cutting to quality control of the newly etched capillary.


Subject(s)
Silicon Dioxide , Spectrometry, Mass, Electrospray Ionization , Capillaries , Electrophoresis, Capillary/methods , Porosity , Silicon Dioxide/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
6.
Food Chem ; 352: 129396, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33652195

ABSTRACT

Extracts from 'Zhéri' and 'Hicaznar' varieties of pomegranate, Punica granatum L., were obtained by subjecting powdered peels to extraction using water, water/ethanol (1:1; v/v), ethanol, acetone and heptane. Using the agar diffusion assay, extracts with water and/or ethanol were shown to display significant antimicrobial activity with diameters of inhibition zones up to 20 mm. Ethanolic extracts, which were the most active, were fractionated using SPE, HPLC and UHPLC, and the active compounds they contain were identified by mass spectrometry. Punicalagin, under its α and ß anomeric forms, was identified as the antibacterial compound in pomegranate peel extracts. Both forms were active with MIC values between 0.3 and 1.2 µg.ml-1, and they easily converted from one to the other with an α/ß equilibrium ratio of 3/7. Their spectrum of activity targeted 10 out of 13 Gram positive and two out of three Gram negative bacteria as well as a yeast strain.


Subject(s)
Anti-Infective Agents/pharmacology , Hydrolyzable Tannins/pharmacology , Pomegranate/chemistry , Chromatography, High Pressure Liquid , Fruit/chemistry , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...