Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 10(1): 94, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30626866

ABSTRACT

Histone demethylase KDM5A removes methyl marks from lysine 4 of histone H3 and is often overexpressed in cancer. The in vitro demethylase activity of KDM5A is allosterically enhanced by binding of its product, unmodified H3 peptides, to its PHD1 reader domain. However, the molecular basis of this allosteric enhancement is unclear. Here we show that saturation of the PHD1 domain by the H3 N-terminal tail peptides stabilizes binding of the substrate to the catalytic domain and improves the catalytic efficiency of demethylation. When present in saturating concentrations, differently modified H3 N-terminal tail peptides have a similar effect on demethylation. However, they vary greatly in their affinity towards the PHD1 domain, suggesting that H3 modifications can tune KDM5A activity. Furthermore, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) experiments reveal conformational changes in the allosterically enhanced state. Our findings may enable future development of anti-cancer therapies targeting regions involved in allosteric regulation.


Subject(s)
Histones/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Animals , Catalytic Domain , Models, Molecular , Protein Conformation , Protein Domains , Retinoblastoma-Binding Protein 2/genetics , Sf9 Cells
2.
Methods ; 144: 134-151, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29678586

ABSTRACT

Mass spectrometry (MS)-based methods for analyzing protein higher order structures have gained increasing application in the field of biopharmaceutical development. The predominant methods used in this area include native MS, hydrogen deuterium exchange-MS, covalent labeling, cross-linking and limited proteolysis. These MS-based methods will be briefly described in this article, followed by a discussion on how these methods contribute at different stages of discovery and development of protein therapeutics.


Subject(s)
Deuterium Exchange Measurement/methods , Drug Development/methods , Mass Spectrometry/methods , Recombinant Proteins/metabolism , Animals , Biological Products/chemistry , Biological Products/metabolism , Humans , Protein Conformation , Recombinant Proteins/chemistry
3.
J Proteome Res ; 17(4): 1700-1711, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29518331

ABSTRACT

Regulator of G Protein Signaling 14 (RGS14) is a complex scaffolding protein that integrates G protein and MAPK signaling pathways. In the adult mouse brain, RGS14 is predominantly expressed in hippocampal CA2 neurons where it naturally inhibits synaptic plasticity and hippocampus-dependent learning and memory. However, the signaling proteins that RGS14 natively engages to regulate plasticity are unknown. Here, we show that RGS14 exists in a high-molecular-weight protein complex in brain. To identify RGS14 neuronal interacting partners, endogenous RGS14 immunoprecipitated from mouse brain was subjected to mass spectrometry and proteomic analysis. We find that RGS14 interacts with key postsynaptic proteins that regulate plasticity. Gene ontology analysis reveals the most enriched RGS14 interactors have functional roles in actin-binding, calmodulin(CaM)-binding, and CaM-dependent protein kinase (CaMK) activity. We validate these findings using biochemical assays that identify interactions with two previously unknown binding partners. We report that RGS14 directly interacts with Ca2+/CaM and is phosphorylated by CaMKII in vitro. Lastly, we detect that RGS14 associates with CaMKII and CaM in hippocampal CA2 neurons. Taken together, these findings demonstrate that RGS14 is a novel CaM effector and CaMKII phosphorylation substrate thereby providing new insight into mechanisms by which RGS14 controls plasticity in CA2 neurons.


Subject(s)
Brain Chemistry , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calmodulin/metabolism , Hippocampus/chemistry , RGS Proteins/metabolism , Animals , CA2 Region, Hippocampal/cytology , Calcium/metabolism , Hippocampus/metabolism , Mice , Neuronal Plasticity , Neurons/metabolism , Phosphorylation , Protein Binding , Proteomics
4.
J Mol Biol ; 429(23): 3696-3716, 2017 11 24.
Article in English | MEDLINE | ID: mdl-28970104

ABSTRACT

Microtubules are highly dynamic tubulin polymers that are required for a variety of cellular functions. Despite the importance of a cellular population of tubulin dimers, we have incomplete information about the mechanisms involved in the biogenesis of αß-tubulin heterodimers. In addition to prefoldin and the TCP-1 Ring Complex, five tubulin-specific chaperones, termed cofactors A-E (TBCA-E), and GTP are required for the folding of α- and ß-tubulin subunits and assembly into heterodimers. We recently described the purification of a novel trimer, TBCD•ARL2•ß-tubulin. Here, we employed hydrogen/deuterium exchange coupled with mass spectrometry to explore the dynamics of each of the proteins in the trimer. Addition of guanine nucleotides resulted in changes in the solvent accessibility of regions of each protein that led to predictions about each's role in tubulin folding. Initial testing of that model confirmed that it is ARL2, and not ß-tubulin, that exchanges GTP in the trimer. Comparisons of the dynamics of ARL2 monomer to ARL2 in the trimer suggested that its protein interactions were comparable to those of a canonical GTPase with an effector. This was supported by the use of nucleotide-binding assays that revealed an increase in the affinity for GTP by ARL2 in the trimer. We conclude that the TBCD•ARL2•ß-tubulin complex represents a functional intermediate in the ß-tubulin folding pathway whose activity is regulated by the cycling of nucleotides on ARL2. The co-purification of guanine nucleotide on the ß-tubulin in the trimer is also shown, with implications to modeling the pathway.


Subject(s)
GTP-Binding Proteins/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Tubulin/chemistry , GTP-Binding Proteins/chemistry , HEK293 Cells , Humans , Microtubule-Associated Proteins/chemistry , Protein Conformation , Protein Folding , Signal Transduction , Tubulin/metabolism
5.
Cell ; 170(3): 457-469.e13, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753425

ABSTRACT

G protein-coupled receptors (GPCRs) mediate diverse signaling in part through interaction with arrestins, whose binding promotes receptor internalization and signaling through G protein-independent pathways. High-affinity arrestin binding requires receptor phosphorylation, often at the receptor's C-terminal tail. Here, we report an X-ray free electron laser (XFEL) crystal structure of the rhodopsin-arrestin complex, in which the phosphorylated C terminus of rhodopsin forms an extended intermolecular ß sheet with the N-terminal ß strands of arrestin. Phosphorylation was detected at rhodopsin C-terminal tail residues T336 and S338. These two phospho-residues, together with E341, form an extensive network of electrostatic interactions with three positively charged pockets in arrestin in a mode that resembles binding of the phosphorylated vasopressin-2 receptor tail to ß-arrestin-1. Based on these observations, we derived and validated a set of phosphorylation codes that serve as a common mechanism for phosphorylation-dependent recruitment of arrestins by GPCRs.


Subject(s)
Arrestins/chemistry , Rhodopsin/chemistry , Amino Acid Sequence , Animals , Arrestins/metabolism , Chromatography, Liquid , Humans , Mice , Models, Molecular , Phosphorylation , Rats , Rhodopsin/metabolism , Sequence Alignment , Tandem Mass Spectrometry , X-Rays
6.
J Biol Chem ; 292(30): 12653-12666, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28615457

ABSTRACT

AMP-activated protein kinase (AMPK) is a central cellular energy sensor that adapts metabolism and growth to the energy state of the cell. AMPK senses the ratio of adenine nucleotides (adenylate energy charge) by competitive binding of AMP, ADP, and ATP to three sites (CBS1, CBS3, and CBS4) in its γ-subunit. Because these three binding sites are functionally interconnected, it remains unclear how nucleotides bind to individual sites, which nucleotides occupy each site under physiological conditions, and how binding to one site affects binding to the other sites. Here, we comprehensively analyze nucleotide binding to wild-type and mutant AMPK protein complexes by quantitative competition assays and by hydrogen-deuterium exchange MS. We also demonstrate that NADPH, in addition to the known AMPK ligand NADH, directly and competitively binds AMPK at the AMP-sensing CBS3 site. Our findings reveal how AMP binding to one site affects the conformation and adenine nucleotide binding at the other two sites and establish CBS3, and not CBS1, as the high affinity exchangeable AMP/ADP/ATP-binding site. We further show that AMP binding at CBS4 increases AMP binding at CBS3 by 2 orders of magnitude and reverses the AMP/ATP preference of CBS3. Together, these results illustrate how the three CBS sites collaborate to enable highly sensitive detection of cellular energy states to maintain the tight ATP homeostastis required for cellular metabolism.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adenine/metabolism , Nucleotides/metabolism , AMP-Activated Protein Kinases/chemistry , AMP-Activated Protein Kinases/genetics , Adenine/chemistry , Binding Sites , Humans , Models, Molecular , Nucleotides/chemistry
7.
Cell Res ; 27(6): 728-747, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28524165

ABSTRACT

G protein-coupled receptor kinases (GRKs) play pivotal roles in desensitizing GPCR signaling but little is known about how GRKs recognize and phosphorylate GPCRs due to the technical difficulties in detecting the highly dynamic GPCR/GRK interaction. By combining a genetic approach with multiple biochemical assays, we identified the key determinants for the assembly of the prototypical GPCR rhodopsin with its kinase GRK1. Our work reveals that the regulatory G-protein signaling homology (RH) domain of GRKs is the primary binding site to GPCRs and an active conformation of the GRK1 kinase domain is required for efficient interaction with rhodopsin. In addition, we provide a mechanistic solution for the longstanding puzzle about the gain-of-function Q41L mutation in GRK5. This mutation is in the RH domain and increases the capacity of the GRK mutant to interact with and to desensitize GPCRs. Finally we present the principal architecture of a rhodopsin/GRK complex through negative stain electron microscopy reconstruction. Together, these data define the key components for the rhodopsin/GRK1 interaction and provide a framework for understanding GRK-mediated desensitization of GPCRs.


Subject(s)
G-Protein-Coupled Receptor Kinases/metabolism , Rhodopsin/metabolism , Binding Sites , Blotting, Western , G-Protein-Coupled Receptor Kinases/genetics , HEK293 Cells , Humans , Mass Spectrometry , Protein Binding , Rhodopsin/genetics
10.
Nat Chem Biol ; 13(1): 111-118, 2017 01.
Article in English | MEDLINE | ID: mdl-27870835

ABSTRACT

Resistance to endocrine therapies remains a major clinical problem for the treatment of estrogen receptor-α (ERα)-positive breast cancer. On-target side effects limit therapeutic compliance and use for chemoprevention, highlighting an unmet need for new therapies. Here we present a full-antagonist ligand series lacking the prototypical ligand side chain that has been universally used to engender antagonism of ERα through poorly understood structural mechanisms. A series of crystal structures and phenotypic assays reveal a structure-based design strategy with separate design elements for antagonism and degradation of the receptor, and access to a structurally distinct space for further improvements in ligand design. Understanding structural rules that guide ligands to produce diverse ERα-mediated phenotypes has broad implications for the treatment of breast cancer and other estrogen-sensitive aspects of human health including bone homeostasis, energy metabolism, and autoimmunity.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Receptors, Estrogen/antagonists & inhibitors , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , Ligands , Models, Molecular , Molecular Structure , Receptors, Estrogen/metabolism , Structure-Activity Relationship
11.
J Biol Chem ; 291(49): 25281-25291, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27694446

ABSTRACT

Liver receptor homolog 1 (NR5A2, LRH-1) is an orphan nuclear hormone receptor that regulates diverse biological processes, including metabolism, proliferation, and the resolution of endoplasmic reticulum stress. Although preclinical and cellular studies demonstrate that LRH-1 has great potential as a therapeutic target for metabolic diseases and cancer, development of LRH-1 modulators has been difficult. Recently, systematic modifications to one of the few known chemical scaffolds capable of activating LRH-1 failed to improve efficacy substantially. Moreover, mechanisms through which LRH-1 is activated by synthetic ligands are entirely unknown. Here, we use x-ray crystallography and other structural methods to explore conformational changes and receptor-ligand interactions associated with LRH-1 activation by a set of related agonists. Unlike phospholipid LRH-1 ligands, these agonists bind deep in the pocket and do not interact with residues near the mouth nor do they expand the pocket like phospholipids. Unexpectedly, two closely related agonists with similar efficacies (GSK8470 and RJW100) exhibit completely different binding modes. The dramatic repositioning is influenced by a differential ability to establish stable face-to-face π-π-stacking with the LRH-1 residue His-390, as well as by a novel polar interaction mediated by the RJW100 hydroxyl group. The differing binding modes result in distinct mechanisms of action for the two agonists. Finally, we identify a network of conserved water molecules near the ligand-binding site that are important for activation by both agonists. This work reveals a previously unappreciated complexity associated with LRH-1 agonist development and offers insights into rational design strategies.


Subject(s)
Aniline Compounds/chemistry , Bridged Bicyclo Compounds/chemistry , Receptors, Cytoplasmic and Nuclear/agonists , Receptors, Cytoplasmic and Nuclear/chemistry , Crystallography, X-Ray , Humans , Protein Domains
12.
Anal Chem ; 88(12): 6607-14, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27224086

ABSTRACT

Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) is an information-rich biophysical method for the characterization of protein dynamics. Successful applications of differential HDX-MS include the characterization of protein-ligand binding. A single differential HDX-MS data set (protein ± ligand) is often comprised of more than 40 individual HDX-MS experiments. To eliminate laborious manual processing of samples, and to minimize random and gross errors, automated systems for HDX-MS analysis have become routine in many laboratories. However, an automated system, while less prone to random errors introduced by human operators, may have systematic errors that go unnoticed without proper detection. Although the application of automated (and manual) HDX-MS has become common, there are only a handful of studies reporting the systematic evaluation of the performance of HDX-MS experiments, and no reports have been published describing a cross-site comparison of HDX-MS experiments. Here, we describe an automated HDX-MS platform that operates with a parallel, two-trap, two-column configuration that has been installed in two remote laboratories. To understand the performance of the system both within and between laboratories, we have designed and completed a test-retest repeatability study for differential HDX-MS experiments implemented at each of two laboratories, one in Florida and the other in Spain. This study provided sufficient data to do both within and between laboratory variability assessments. Initial results revealed a systematic run-order effect within one of the two systems. Therefore, the study was repeated, and this time the conclusion was that the experimental conditions were successfully replicated with minimal systematic error.


Subject(s)
Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Analysis of Variance , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Deuterium/analysis , Deuterium Exchange Measurement/instrumentation , Hydrogen/analysis , Ligands , Mass Spectrometry/instrumentation , Peptides/analysis , Proteins/chemistry , Receptors, Calcitriol/chemistry , Reproducibility of Results
13.
Anal Chem ; 87(7): 4015-4022, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25763479

ABSTRACT

Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry has emerged as a powerful tool for analyzing the conformational dynamics of protein-ligand and protein-protein interactions. Recent advances in instrumentation and methodology have expanded the utility of HDX for the analysis of large and complex proteins; however, asymmetric dimers with shared amino acid sequence present a unique challenge for HDX because assignment of peptides with identical sequence to their subunit of origin remains ambiguous. Here we report the use of differential isotopic labeling to facilitate HDX analysis of multimers using HIV-1 reverse transcriptase (RT) as a model. RT is an asymmetric heterodimer of 51 kDa (p51) and 66 kDa (p66) subunits. The first 440 residues of p51 and p66 are identical. In this study differentially labeled RT was reconstituted from isotopically enriched ((15)N-labeled) p51 and unlabeled p66. To enable detection of (15)N-deuterated RT peptides, the software HDX Workbench was modified to follow a 100% (15)N model. Our results demonstrated that (15)N enrichment of p51 did not affect its conformational dynamics compared to unlabeled p51, but (15)N-labeled p51 did show different conformational dynamics than p66 in the RT heterodimer. Differential HDX-MS of isotopically labeled RT in the presence of the non-nucleoside reverse transcriptase inhibitor (NNRTI) efavirenz (EFV) showed subunit-specific perturbation in the rate of HDX consistent with previously published results and the RT-EFV cocrystal structure.


Subject(s)
Deuterium Exchange Measurement , HIV Reverse Transcriptase/analysis , HIV Reverse Transcriptase/chemistry , Mass Spectrometry , Nitrogen Isotopes
14.
J Biol Chem ; 290(14): 9037-49, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25666614

ABSTRACT

RGS14 contains distinct binding sites for both active (GTP-bound) and inactive (GDP-bound) forms of Gα subunits. The N-terminal regulator of G protein signaling (RGS) domain binds active Gαi/o-GTP, whereas the C-terminal G protein regulatory (GPR) motif binds inactive Gαi1/3-GDP. The molecular basis for how RGS14 binds different activation states of Gα proteins to integrate G protein signaling is unknown. Here we explored the intramolecular communication between the GPR motif and the RGS domain upon G protein binding and examined whether RGS14 can functionally interact with two distinct forms of Gα subunits simultaneously. Using complementary cellular and biochemical approaches, we demonstrate that RGS14 forms a stable complex with inactive Gαi1-GDP at the plasma membrane and that free cytosolic RGS14 is recruited to the plasma membrane by activated Gαo-AlF4(-). Bioluminescence resonance energy transfer studies showed that RGS14 adopts different conformations in live cells when bound to Gα in different activation states. Hydrogen/deuterium exchange mass spectrometry revealed that RGS14 is a very dynamic protein that undergoes allosteric conformational changes when inactive Gαi1-GDP binds the GPR motif. Pure RGS14 forms a ternary complex with Gαo-AlF4(-) and an AlF4(-)-insensitive mutant (G42R) of Gαi1-GDP, as observed by size exclusion chromatography and differential hydrogen/deuterium exchange. Finally, a preformed RGS14·Gαi1-GDP complex exhibits full capacity to stimulate the GTPase activity of Gαo-GTP, demonstrating that RGS14 can functionally engage two distinct forms of Gα subunits simultaneously. Based on these findings, we propose a working model for how RGS14 integrates multiple G protein signals in host CA2 hippocampal neurons to modulate synaptic plasticity.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , RGS Proteins/metabolism , Signal Transduction , Animals , Base Sequence , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/metabolism , DNA Primers , HeLa Cells , Humans , Neurons/metabolism , Rats
15.
Structure ; 22(7): 961-73, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-24909783

ABSTRACT

Structural and functional details of the N-terminal activation function 1 (AF1) of most nuclear receptors are poorly understood due to the highly dynamic intrinsically disordered nature of this domain. A hydrogen/deuterium exchange (HDX) mass-spectrometry-based investigation of TATA box-binding protein (TBP) interaction with various domains of progesterone receptor (PR) demonstrate that agonist-bound PR interaction with TBP via AF1 impacts the mobility of the C-terminal AF2. Results from HDX and other biophysical studies involving agonist- and antagonist-bound full-length PR and isolated PR domains reveal the molecular mechanism underlying synergistic transcriptional activation mediated by AF1 and AF2, dominance of PR-B isoform over PR-A, and the necessity of AF2 for full AF1-mediated transcriptional activity. These results provide a comprehensive picture elaborating the underlying mechanism of PR-TBP interactions as a model for studying nuclear receptor (NR)-transcription factor functional interactions.


Subject(s)
Mass Spectrometry/methods , Protein Conformation , Protein Structure, Tertiary , Receptors, Progesterone/chemistry , Amino Acid Sequence , Animals , Deuterium Exchange Measurement , Humans , Ligands , Mifepristone/chemistry , Mifepristone/metabolism , Models, Molecular , Molecular Sequence Data , Promegestone/chemistry , Promegestone/metabolism , Protein Binding , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Sf9 Cells , TATA-Box Binding Protein/chemistry , TATA-Box Binding Protein/metabolism
16.
Cell ; 157(7): 1685-97, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24949977

ABSTRACT

The glucocorticoid receptor (GR), like many signaling proteins, depends on the Hsp90 molecular chaperone for in vivo function. Although Hsp90 is required for ligand binding in vivo, purified apo GR is capable of binding ligand with no enhancement from Hsp90. We reveal that Hsp70, known to facilitate client delivery to Hsp90, inactivates GR through partial unfolding, whereas Hsp90 reverses this inactivation. Full recovery of ligand binding requires ATP hydrolysis on Hsp90 and the Hop and p23 cochaperones. Surprisingly, Hsp90 ATP hydrolysis appears to regulate client transfer from Hsp70, likely through a coupling of the two chaperone's ATP cycles. Such coupling is embodied in contacts between Hsp90 and Hsp70 in the GR:Hsp70:Hsp90:Hop complex imaged by cryoelectron microscopy. Whereas GR released from Hsp70 is aggregation prone, release from Hsp90 protects GR from aggregation and enhances its ligand affinity. Together, this illustrates how coordinated chaperone interactions can enhance stability, function, and regulation.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Humans , Models, Molecular , Molecular Sequence Data , Protein Folding
17.
J Biol Chem ; 289(21): 14941-54, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24692551

ABSTRACT

Fatty acid-binding proteins (FABPs) are a widely expressed group of calycins that play a well established role in solubilizing cellular fatty acids. Recent studies, however, have recast FABPs as active participants in vital lipid-signaling pathways. FABP5, like its family members, displays a promiscuous ligand binding profile, capable of interacting with numerous long chain fatty acids of varying degrees of saturation. Certain "activating" fatty acids induce the protein's cytoplasmic to nuclear translocation, stimulating PPARß/δ transactivation; however, the rules that govern this process remain unknown. Using a range of structural and biochemical techniques, we show that both linoleic and arachidonic acid elicit FABP5's translocation by permitting allosteric communication between the ligand-sensing ß2 loop and a tertiary nuclear localization signal within the α-helical cap of the protein. Furthermore, we show that more saturated, nonactivating fatty acids inhibit nuclear localization signal formation by destabilizing this activation loop, thus implicating FABP5 specifically in cis-bonded, polyunsaturated fatty acid signaling.


Subject(s)
Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , PPAR gamma/metabolism , PPAR-beta/metabolism , Animals , Arachidonic Acid/chemistry , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Binding Sites , COS Cells , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytoplasm/drug effects , Cytoplasm/metabolism , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/genetics , Fatty Acids/chemistry , Fatty Acids/pharmacology , Humans , Ligands , Linoleic Acid/chemistry , Linoleic Acid/metabolism , Linoleic Acid/pharmacology , MCF-7 Cells , Models, Molecular , Molecular Structure , Mutation , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/metabolism , PPAR gamma/genetics , PPAR-beta/genetics , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport/drug effects , Transcriptional Activation/drug effects
18.
Diabetes ; 63(4): 1394-409, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24651808

ABSTRACT

Insulin replacement therapy is a widely adopted treatment for all patients with type 1 diabetes and some with type 2 diabetes. However, injection of insulin has suffered from problems such as tissue irritation, abscesses, discomfort, and inconvenience. The use of orally bioactive insulin mimetics thus represents an ideal treatment alternative. Here we show that a chaetochromin derivative (4548-G05) acts as a new nonpeptidyl insulin mimetic. 4548-G05 selectively activates an insulin receptor (IR) but not insulin-like growth factor receptor-I or other receptor tyrosine kinases. Through binding to the extracellular domain of the IR, 4548-G05 induces activation of the receptor and initiates the downstream Akt and extracellular signal-related kinase pathways to trigger glucose uptake in C2C12 myotubes. Moreover, it displays a potent blood glucose-lowering effect when administrated orally in normal, type 1 diabetic, and type 2 diabetic mice models. Therefore, 4548-G05 may represent a novel pharmacological agent for antidiabetes drug development.


Subject(s)
Blood Glucose/drug effects , Hypoglycemic Agents/therapeutic use , Naphthoquinones/therapeutic use , Receptor, Insulin/agonists , Animals , CHO Cells , Cricetulus , Diabetes Mellitus, Experimental/drug therapy , Male , Mice , Mice, Inbred C57BL , Receptor, Insulin/metabolism , Signal Transduction/drug effects
19.
Cell Metab ; 19(2): 193-208, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24440037

ABSTRACT

Nuclear receptors (NRs) play central roles in metabolic syndrome, making them attractive drug targets despite the challenge of achieving functional selectivity. For instance, members of the thiazolidinedione class of insulin sensitizers offer robust efficacy but have been limited due to adverse effects linked to activation of genes not involved in insulin sensitization. Studies reviewed here provide strategies for targeting subsets of PPARγ target genes, enabling development of next-generation modulators with improved therapeutic index. Additionally, emerging evidence suggests that targeting the NRs ROR and Rev-erb holds promise for treating metabolic syndrome based on their involvement in circadian rhythm and metabolism.


Subject(s)
PPAR gamma/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Adipose Tissue, Brown/metabolism , Animals , Circadian Rhythm/physiology , Humans , Metabolic Syndrome/metabolism
20.
Angew Chem Int Ed Engl ; 53(1): 132-5, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24254636

ABSTRACT

The X-ray crystal structure of a bovine antibody (BLV1H12) revealed a unique structure in its ultralong heavy chain complementarity determining region 3 (CDR3H) that folds into a solvent-exposed ß-strand "stalk" fused to a disulfide crosslinked "knob" domain. We have substituted an antiparallel heterodimeric coiled-coil motif for the ß-strand stalk in this antibody. The resulting antibody (Ab-coil) expresses in mammalian cells and has a stability similar to that of the parent bovine antibody. MS analysis of H-D exchange supports the coiled-coil structure of the substituted peptides. Substitution of the knob-domain of Ab-coil with bovine granulocyte colony-stimulating factor (bGCSF) results in a stably expressed chimeric antibody, which proliferates mouse NFS-60 cells with a potency comparable to that of bGCSF. This work demonstrates the utility of this novel coiled-coil CDR3 motif as a means for generating stable, potent antibody fusion proteins with useful pharmacological properties.


Subject(s)
Peptides/chemistry , Animals , Cattle , Cell Proliferation , Circular Dichroism , Mice , Models, Molecular , Protein Engineering , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...