Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Allergy Rhinol (Providence) ; 9: 2152656718781609, 2018.
Article in English | MEDLINE | ID: mdl-29977658

ABSTRACT

BACKGROUND: Photoelectrochemical oxidation (PECO) is a new air purification technology developed to reduce circulating indoor allergens. PECO removes particles as small as 0.1 nm with the destruction of organic matter otherwise not trapped by a traditional filter and removes volatile organic compounds. OBJECTIVE: We hypothesized that with daily use, the device would reduce user nasal and ocular allergy total symptom scores (TSS) within 4 weeks. METHODS: The study was performed among 46 individuals with self-reported allergies using a portable PECO air purifier. Self-reported TSS were calculated at baseline and weekly for 4 weeks following initiation of continuous use of the system. TSS was the sum of total nasal symptom scores (TNSS) and total ocular symptom scores (TOSS) for the week. RESULTS: There was a statistically significant change in overall TSS from baseline to 4 weeks (10.1 at baseline and 4.35 postintervention) resulting in a mean difference of 5.75 (95% confidence interval [CI] 4.32-7.18; P < .0001). There was a statistically significant change in TNSS from baseline to 4 weeks (6.3 at baseline and 3.04 postintervention) resulting in a mean difference of 3.26 (95% CI 2.33-3.19; P < .0001). There was a statistically significant change in TOSS from baseline to 4 weeks (3.82 at baseline and 1.3 postintervention) resulting in a mean difference of 2.52 (95% CI 1.74-3.3; P < .0001). CONCLUSION: With the use of PECO air purification technology, TSS, TNSS, and TOSS decreased significantly. These improvements were consistent over the 4-week course of device use.

2.
Int J Nanomedicine ; 5: 177-83, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20463933

ABSTRACT

PURPOSE: Ventilator-associated pneumonia (VAP) is a nosocomial infection resulting in significant morbidity and mortality. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are pathogens associated with VAP. Silver (Ag) coating of endotracheal tubes (ETTs) reduces bacterial colonization, however titanium dioxide (TiO(2)) coating has not been studied. METHODS: Five types of ETT coatings were applied over silica layer: Ag, solgel TiO(2), solgel TiO(2) with Ag, Degussa P25 TiO(2) (Degussa TiO(2)), and Degussa TiO(2) with Ag. After ETTs were incubated with P. aeruginosa or S. aureus; colonization was determined quantitatively. RESULTS: Pseudomonas aeruginosa and S. aureus grew for 5 days on standard ETTs. Compared to standard ETTs, P. aeruginosa growth was significantly inhibited by solgel TiO(2) with Ag at 24 hours, and by Degussa TiO(2) with Ag at 24 and 48 hours after inoculation. No significant difference in S. aureus growth was observed between the control and any of the five coatings for 5 days. CONCLUSION: In vitro, solgel TiO(2) with Ag and Degussa TiO(2) with Ag both attenuated P. aeruginosa growth, but demonstrated no effect on S. aureus colonization. Further studies using alternative coating and incorporating UV light exposure are needed to identify their potential utility in reducing VAP.


Subject(s)
Coated Materials, Biocompatible/administration & dosage , Intubation, Intratracheal/instrumentation , Pseudomonas aeruginosa/drug effects , Silver/administration & dosage , Silver/chemistry , Staphylococcus aureus/drug effects , Titanium/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Cell Survival/drug effects , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...