Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet ; 1002021.
Article in English | MEDLINE | ID: mdl-34238776

ABSTRACT

Improving spikelet number without limiting panicle number is an important strategy to increase rice productivity. In this study, a spikelet number enhancing SPIKE-allele was identified from the aus subtype indica rice, cv. Bhutmuri, which has an identical japonica like corresponding sequence including a retrotransposon sequence, usually absent in indica genotypes, like IR64. An allele-specific singletube PCR-based codominant marker targeting an A/G single-nucleotide polymorphism (SNP) at the 3'UTR was identified for easier genotyping. The yield enhancing ability of the Bhutmuri-SPIKE allele carrying RILs and NILs over IR64-SPIKE allele carrying alleles was due to increased number of filled grains/panicle. More than three times higher abundance of SPIKE transcripts was observed in Bhutmuri and NILs carrying this allele compared with IR64 and its allele carrying NILs. Higher rate of photosynthesis at more than 900 µmolm-2s-1 light intensity and more than six small vascular bundles between the two large vascular bundles in the flag leaves of Bhutmuri and its allele carrying NILs were also observed. The identified SPIKE allele and the marker associated with it will be useful for increasing the productivity of rice by marker-assisted breeding.


Subject(s)
Edible Grain/genetics , Oryza/genetics , Plant Breeding , Quantitative Trait Loci/genetics , Alleles , Chromosome Mapping , Edible Grain/growth & development , Genotype , Oryza/growth & development , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/growth & development
2.
J Forensic Leg Med ; 20(5): 513-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23756524

ABSTRACT

Unintended transfer of biological material containing DNA is a concern to all laboratories conducting PCR analysis. While forensic laboratories have protocols in place to reduce the possibility of contaminating casework samples, there is no way to detect when a reference sample is mislabeled as evidence, or contaminates a forensic sample. Thus there is public concern regarding the safeguarding of DNA submitted to crime labs. We demonstrate a method of introducing an internal amplification control to reference samples, in the form of a nullomer barcode which is based upon sequences absent or rare from publically accessible DNA databases. The detection of this barcode would indicate that the source of analyzed DNA was from a reference sample provided by an individual, and not from an evidence sample. We demonstrate that the nullomers can be added directly to collection devices (FTA paper) to allow tagging during the process of sample collection. We show that such nullomer oligonucleotides can be added to existing forensic typing and quantification kits, without affecting genotyping or quantification results. Finally, we show that even when diluted a million-fold and spilled on a knife, the nullomer tags can be clearly detected. These tags support the National Research Council of the National Academy recommendation that "Quality control procedures should be designed to identify mistakes, fraud, and bias" in forensic science (National Academy of Sciences, 2009).


Subject(s)
DNA Barcoding, Taxonomic , DNA Contamination , Quality Control , Specimen Handling , DNA Fingerprinting , DNA Primers , Humans , Laboratories , Microsatellite Repeats , Oligonucleotides , Polymerase Chain Reaction , Sequence Analysis, DNA
3.
Hum Genet ; 132(6): 697-707, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23468175

ABSTRACT

A prior linkage scan in Pima Indians identified a putative locus for type two diabetes (T2D) and body mass index (BMI) on chromosome 11q23-25. Association mapping across this region identified single nucleotide polymorphisms (SNPs) in the trehalase gene (TREH) that were associated with T2D. To assess the putative connection between trehalase activity and T2D, we performed a linkage study for trehalase activity in 570 Pima Indians who had measures of trehalase activity. Strong evidence of linkage of plasma trehalase activity (LOD = 7.0) was observed in the TREH locus. Four tag SNPs in TREH were genotyped in these subjects and plasma trehalase activity was highly associated with three SNPs: rs2276064, rs117619140 and rs558907 (p = 2.2 × 10(-11)-1.4 × 10(-23)), and the fourth SNP, rs10790256, was associated conditionally on these three (p = 2.9 × 10(-7)). Together, the four tag SNPs explained 51 % of the variance in plasma trehalase activity and 79 % of the variance attributed to the linked locus. These four tag SNPs were further genotyped in 828 subjects used for association mapping of T2D, and rs558907 was associated with T2D (odds ratio (OR) 1.94, p = 0.002). To assess replication of the T2D association, all four tag SNPs were additionally genotyped in two non-overlapping samples of Native Americans. Rs558907 was reproducibly associated with T2D in 2,942 full-heritage Pima Indians (OR 1.27 p = 0.03) and 3,897 "mixed" heritage Native Americans (OR 1.21, p = 0.03), and the strongest evidence for association came from combining all samples (OR 1.27 p = 1.6 × 10(-4), n = 7,667). However, among 320 longitudinally studied subjects, measures of trehalase activity from a non-diabetic exam did not predict those who would eventually develop diabetes versus those who would remain non-diabetic (hazard ratio 0.94 per SD of trehalase activity, p = 0.29). We conclude that variants in TREH control trehalase activity, and although one of these variants is also reproducibly associated with T2D, it is likely that the effect of the SNP on risk of T2D occurs by a mechanism different than affecting trehalase activity. Alternatively, TREH variants may be tagging a nearby T2D locus.


Subject(s)
Diabetes Mellitus, Type 2/enzymology , Trehalase/blood , Adult , Female , Genetic Association Studies , Genetic Linkage , Genetic Predisposition to Disease , Haplotypes , Humans , Longitudinal Studies , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk , Trehalase/genetics
4.
Peptides ; 38(2): 302-11, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23000474

ABSTRACT

We demonstrate the first use of the nullomer (absent sequences) approach to drug discovery and development. Nullomers are the shortest absent sequences determined in a species, or group of species. By identifying the shortest absent peptide sequences from the NCBI databases, we screened several potential anti-cancer peptides. In order to improve cell penetration and solubility we added short poly arginine tails (5Rs), and initially solubilized the peptides in 1M trehalose. The results for one of the absent sequences 9R (RRRRRNWMWC), and its scrambled version 9S1R (RRRRRWCMNW) are reported here. We refer to these peptides derived from nullomers as PolyArgNulloPs. A control PolyArgNulloP, 124R (RRRRRWFMHW), was also included. The lethal effects of 9R and 9S1R are mediated by mitochondrial impairment as demonstrated by increased ROS production, ATP depletion, cell growth inhibition, and ultimately cell death. These effects increase over time for cancer cells with a concomitant drop in IC-50 for breast and prostate cancer cells. This is in sharp contrast to the effects in normal cells, which show a decreased sensitivity to the NulloPs over time.


Subject(s)
Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver/cytology , Liver/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...