Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-27338438

ABSTRACT

BACKGROUND: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; METHODS: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor ß (ERß) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; RESULTS: RESULTS show a wide diversity in ED effects on ERß mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; CONCLUSION: The observed potency of the EDs to influence ERß mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency.


Subject(s)
Cells, Cultured/drug effects , Cells, Cultured/metabolism , Cerebellum/metabolism , Endocrine Disruptors/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens, Non-Steroidal/metabolism , Animals , Benzhydryl Compounds/metabolism , Camphor/analogs & derivatives , Camphor/metabolism , Estradiol/metabolism , Female , Humans , Male , Phenols/metabolism , Rats, Sprague-Dawley , Thyronines/metabolism
2.
Reprod Sci ; 21(12): 1492-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24740989

ABSTRACT

Morphofunctional changes in hypothalamic neurons are highly energy dependent and rely on mitochondrial metabolism. Therefore, mitochondrial adenosine triphosphate production plays a permissive role in hypothalamic regulatory events. Here, we demonstrated that in the female rat hypothalamus, mitochondrial metabolism and tissue oxygenation show an asymmetric lateralization during the estrous cycle. This asymmetry was not detected in males. The observed sidedness suggests that estrous cycle-linked hypothalamic functions in females are based on hemispheric distinction. The novel concept of hypothalamic asymmetry necessitates the revision of hypothalamic neural circuits, synaptic reorganization, and the role of hypothalamic sides in the regulation of integrated homeostatic functions.


Subject(s)
Energy Metabolism , Hypothalamus/metabolism , Mitochondria/metabolism , Neurons/metabolism , Adenosine Triphosphate/metabolism , Animals , Cell Respiration , Estrus/metabolism , Female , Homeostasis , Male , Oxygen Consumption , Rats, Wistar , Sex Factors
3.
Acta Vet Hung ; 60(2): 263-84, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22609997

ABSTRACT

Oestrogen (E2) and thyroid hormones (THs) are key regulators of cerebellar development. Recent reports implicate a complex mechanism through which E2 and THs influence the expression levels of each other's receptors (ERs and TRs) to precisely mediate developmental signals and modulate signal strength. We examined the modulating effects of E2 and THs on the expression levels of their receptor mRNAs and proteins in cultured cerebellar cells obtained from 7-day-old rat pups. Cerebellar granule cell cultures were treated with either E2, THs or a combination of these hormones, and resulting receptor expression levels were determined by quantitative PCR and Western blot techniques. The results were compared to non-treated controls and to samples obtained from 14-day-old in situ cerebella. Additionally, we determined the glial effects on the regulation of ER-TR expression levels. The results show that (i) ER and TR expression depends on the combined presence of E2 and THs; (ii) glial cells mediate the hormonal regulation of neuronal ER-TR expression and (iii) loss of tissue integrity results in characteristic changes in ER-TR expression levels. These observations suggest that both E2 and THs, in adequate amounts, are required for the precise orchestration of cerebellar development and that alterations in the ratio of E2/THs may influence signalling mechanisms involved in neurodevelopment. Comparison of data from in vitro and in situ samples revealed a shift in receptor expression levels after loss of tissue integrity, suggesting that such adjusting/regenerative mechanisms may function after cerebellar tissue injury as well.


Subject(s)
Estrogens , Receptors, Thyroid Hormone , Animals , Blotting, Western , Cerebellum , Gene Expression Regulation , Polymerase Chain Reaction , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...