Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 154: 84-94, 2020 07.
Article in English | MEDLINE | ID: mdl-32376456

ABSTRACT

Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.


Subject(s)
Oxidants , Oxygen , Cold Temperature , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy , Free Radicals , Reactive Oxygen Species , Spin Labels
2.
J Genet ; 97(5): 1315-1325, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30555080

ABSTRACT

Nodal-related protein (ndr2) is amember of the transforming growth factor type ß superfamily of factors and is required for ventral midline patterning of the embryonic central nervous system in zebrafish. In humans, mutations in the gene encoding nodal cause holoprosencephaly and heterotaxy. Mutations in the ndr2 gene in the zebrafish (Danio rerio) lead to similar phenotypes, including loss of the medial floor plate, severe deficits in ventral forebrain development and cyclopia. Alleles of the ndr2 gene have been useful in studying patterning of ventral structures of the central nervous system. Fifteen different ndr2 alleles have been reported in zebrafish, of which eight were generated using chemical mutagenesis, four were radiation-induced and the remaining alleles were obtained via random insertion, gene targeting (TALEN) or unknown methods. Therefore, most mutation sites were random and could not be predicted a priori. Using the CRISPR-Cas9 system from Streptococcus pyogenes, we targeted distinct regions in all three exons of zebrafish ndr2 and observed cyclopia in the injected (G0) embryos.We show that the use of sgRNA-Cas9 ribonucleoprotein (RNP) complexes can cause penetrant cyclopic phenotypes in injected (G0) embryos. Targeted polymerase chain reaction amplicon analysis using Sanger sequencing showed that most of the alleles had small indels resulting in frameshifts. The sequence information correlates with the loss of ndr2 activity. In this study, we validate multiple CRISPR targets using an in vitro nuclease assay and in vivo analysis using embryos. We describe one specific mutant allele resulting in the loss of conserved terminal cysteine-coding sequences. This study is another demonstration of the utility of the CRISPR-Cas9 system in generating domain-specific mutations and provides further insights into the structure-function of the ndr2 gene.


Subject(s)
CRISPR-Cas Systems , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Ribonucleoproteins/genetics , Zebrafish Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Binding Sites/genetics , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Holoprosencephaly/genetics , Intracellular Signaling Peptides and Proteins/chemistry , Models, Molecular , Phenotype , Protein Domains , Ribonucleoproteins/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...