Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Yakugaku Zasshi ; 144(1): 129-136, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37914270

ABSTRACT

We conducted a questionnaire survey with sports pharmacists, who engage in anti-doping, to elucidate the activities and challenges they face in their daily work. A total of 218 responses were obtained with the cooperation of the four prefectural pharmacists' associations. We found that 46.8% of respondents had consultations for medication doping concerns once a year or less, while 17.0% reported these multiple times per year. 83.9% of respondents indicated that connections among sports pharmacists would be beneficial, whereas 41.3% had communication with sports pharmacists they were acquainted with. In free text responses, we found challenges experienced were a lack of practical experience, the necessity of increased skills, the lack of cooperation among sports pharmacists and between sports pharmacists and sports organizations, and low awareness of their presence. Regarding future plans, 93.6% indicated an intention to renew certification. 64.2% of respondents were interested in networking events with staff, such as coaches or trainers and 48.6% were interested in regular consultations at training venues. Our findings suggest that in order to expand the anti-doping activities of sports pharmacists, networking opportunities among sports pharmacists and platforms for collaboration with sports organizations should be considered.


Subject(s)
Doping in Sports , Sports , Humans , Pharmacists , Surveys and Questionnaires , Doping in Sports/prevention & control , Professional Role
2.
Biosci Biotechnol Biochem ; 88(1): 16-25, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37777845

ABSTRACT

We previously demonstrated that dietary supplementation with Dunaliella tertiolecta (DT) increases uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) and improves diet-induced obesity (DIO) in C57BL/6 J mice at thermoneutrality (30 °C). Here, we investigated whether DT improves DIO in a thermoneutral UCP1-deficient (KO) animal. KO mice were fed a high-fat diet supplemented with DT for 12 weeks. Compared to control group without DT, body weight was significantly reduced in DT group with no difference in food intake. Dunaliella tertiolecta-supplemented mice exhibited lower adiposity and well-maintained multilocular morphology in BAT, in which a significant increase in gene expression of PR domain containing 16 was detected in DT group compared to control group. Moreover, increase in UCP2 level and/or decrease in ribosomal protein S6 phosphorylation were detected in adipose tissues of DT group relative to control group. These results suggest that DT supplementation improves DIO by stimulating UCP1-independent energy dissipation at thermoneutrality.


Subject(s)
Energy Metabolism , Obesity , Animals , Mice , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Adipose Tissue, Brown/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mice, Knockout
3.
Biochem Biophys Res Commun ; 641: 162-167, 2023 01 22.
Article in English | MEDLINE | ID: mdl-36528955

ABSTRACT

The cellular repressor of adenovirus early region 1A-stimulated gene 1 (CREG1) is a secreted glycoprotein involved in cell differentiation and energy metabolism. It also binds to insulin-like growth factor 2 receptor (IGF2R), a protein implicated in muscle regeneration. However, whether CREG1 regulates the regeneration and metabolism of skeletal muscles via IGF2R remains unclear. This study investigates the role of CREG1 in skeletal muscle regeneration and glucose uptake in C2C12 myotubes and a cardiotoxin (CTX)-induced mouse skeletal muscle regeneration model. CTX-treated skeletal muscle showed significantly higher levels of IGF2R, CREG1, phospho-AMPKα Thr172, and GLUT4 proteins. Similarly, treatment of myotubes with CREG1 also stimulated AMPKα phosphorylation and GLUT4 expression. CREG1-induced AMPKα phosphorylation and 2DG uptake in myotubes were suppressed by IGF2R knockdown and Compound C, an AMPK inhibitor. These results suggest that CREG1 stimulates glucose uptake in skeletal muscles partially through AMPK activation. Hence, CREG1 plays an essential role in muscle regeneration by affecting glucose metabolism in skeletal muscles.


Subject(s)
AMP-Activated Protein Kinases , Glucose , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , Glucose/metabolism , Glucose Transporter Type 4/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphorylation
4.
Genes Cells ; 27(3): 202-213, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007381

ABSTRACT

Thermogenic brown and beige adipocytes express uncoupling protein 1 (UCP1) and stimulate energy metabolism, protecting against obesity and metabolic diseases such as type 2 diabetes and hyperlipidemia. Cellular repressor of E1A-stimulated genes 1 (CREG1) can stimulate thermogenic fat formation, induce UCP1, and reduce diet-induced obesity (DIO) in mice at normal room temperature. In this study, we investigated the effect of CREG1 administration and the importance of UCP1 in DIO inhibition under thermoneutral conditions at 30°C, which attenuate thermogenic fat formation. Interestingly, subcutaneous administration of recombinant CREG1 protein via an osmotic pump in C57BL/6J mice for four weeks increased UCP1 expression in interscapular brown adipose tissue (IBAT), inhibited visceral white fat hypertrophy with partial browning, and reduced DIO compared to that in PBS-treated mice. The mRNA expression of energy metabolism-related genes was significantly increased in the IBAT of CREG1-treated mice compared to that in PBS-treated mice. In contrast, adipocyte-specific overexpression of CREG1 failed to improve DIO in UCP1-knockout mice at thermoneutrality. Our results indicate the therapeutic potential of CREG1 administration for obesity under thermogenic fat-attenuating conditions and highlight the indispensable role of UCP1 in the DIO-inhibitory effect of CREG1.


Subject(s)
Diabetes Mellitus, Type 2 , Adipose Tissue, White/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diet , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/etiology , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
5.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525404

ABSTRACT

Cellular repressor of E1A-stimulated genes 1 (CREG1) is a secreted glycoprotein that accelerates p16-dependent cellular senescence in vitro. We recently reported the ability of CREG1 to stimulate brown adipogenesis using adipocyte P2-CREG1-transgenic (Tg) mice; however, little is known about the effect of CREG1 on aging-associated phenotypes. In this study, we investigated the effects of CREG1 on age-related obesity and renal dysfunction in Tg mice. Increased brown fat formation was detected in aged Tg mice, in which age-associated metabolic phenotypes such as body weight gain and increases in blood glucose were improved compared with those in wild-type (WT) mice. Blood CREG1 levels increased significantly in WT mice with age, whereas the age-related increase was suppressed, and its levels were reduced, in the livers and kidneys of Tg mice relative to those in WT mice at 25 months. Intriguingly, the mRNA levels of Ink4a, Arf, and senescence-associated secretory phenotype (SASP)-related genes and p38MAPK activity were significantly lowered in the aged kidneys of Tg mice, in which the morphological abnormalities of glomeruli as well as filtering function seen in WT kidneys were alleviated. These results suggest the involvement of CREG1 in kidney aging and its potential as a target for improving age-related renal dysfunction.


Subject(s)
Adipose Tissue, Brown/metabolism , Aging/genetics , Kidney/metabolism , Obesity/genetics , Repressor Proteins/genetics , Adipocytes, Brown/metabolism , Adipocytes, Brown/pathology , Adipogenesis/genetics , Adipose Tissue, Brown/pathology , Aging/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Regulation , Kidney/pathology , Kidney Function Tests , Male , Mice , Mice, Transgenic , Obesity/metabolism , Obesity/pathology , Phenotype , Repressor Proteins/metabolism , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Nutrients ; 12(6)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516922

ABSTRACT

We investigated the effect of evodiamine-containing microalga Dunaliella tertiolecta (DT) on the prevention of diet-induced obesity in a thermoneutral C57BL/6J male (30 °C). It attenuates the activity of brown adipose tissue (BAT), which accelerates diet-induced obesity. Nine-week-old mice were fed a high-fat diet supplemented with 10 g (Low group) or 25 g (High group) DT powder per kg food for 12 weeks. Compared to control mice without DT supplementation, body weight gain was significantly reduced in the High group with no difference in food intake. Tissue analyses indicated maintenance of multilocular morphology in BAT and reduced fat deposition in liver in DT-supplemented mice. Molecular analysis showed a significant decrease in mammalian target of rapamycin-ribosomal S6 protein kinase signaling pathway in white adipose tissue and upregulation in mRNA expression of brown fat-associated genes including fibroblast growth factor-21 (Fgf21) and uncoupling protein 1 (Ucp1) in BAT in the High group compared to the control. In the experiments using C3H10T1/2 adipocytes, DT extract upregulated mRNA expression of brown fat-associated genes in dose-dependent and time-dependent manners, accompanied by a significant increase in secreted FGF21 levels. Our data show the ability of DT as a nutraceutical to prevent brown fat attenuation and diet-induced obesity in vivo.


Subject(s)
Adipose Tissue, Brown/metabolism , Diet, High-Fat/adverse effects , Dietary Supplements , Microalgae/chemistry , Obesity/metabolism , Obesity/prevention & control , Quinazolines/administration & dosage , Quinazolines/pharmacology , Thermogenesis/drug effects , Weight Gain/drug effects , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Fibroblast Growth Factors/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Obesity/etiology , Quinazolines/isolation & purification , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Uncoupling Protein 1/metabolism
7.
PLoS One ; 13(10): e0205645, 2018.
Article in English | MEDLINE | ID: mdl-30308063

ABSTRACT

This study investigated the effects of AdipoRon, which is an agonist for adiponectin receptor 1 (AdipoR1) and AdipoR2, on the protein content, myotube diameter, and number of nuclei per myotube of C2C12 cells and skeletal muscle mass in C57BL/6J mice. AdipoRon suppressed the protein content, myotube diameter, and number of nuclei per myotube of C2C12 cells of C2C12 myotubes in a dose-dependent manner. Adiponectin-associated decline of protein content, diameter, and number of nuclei per myotube in C2C12 myotubes was partially rescued by knockdown of AdipoR1 and/or AdipoR2. Phosphorylation level of AMPK showed a trend to be increased by AdipoRon. A significant increase in phosphorylation level of AMPK was observed at 20 µM AdipoRon. Knockdown of AdipoR1 and/or AdipoR2 rescued AdipoRon-associated decrease in protein content of C2C12 myotubes. AdipoRon-associated increase in phosphorylation level of AMPK in C2C12 myotubes was suppressed by knockdown of AdipoR1 and/or AdipoR2. Successive intravenous injections of AdipoRon into mice caused a decrease in the wet weight of plantaris muscle (PLA), but not in soleus muscle (SOL). Mean fiber cross-sectional area of PLA, but not of SOL, was significantly decreased by AdipoRon administration. On the one hand, the expression level of phosphorylated AMPK and ubiquitinated protein in SOL and PLA muscles was upregulated by AdipoRon administration. On the other hand, AdipoRon administration induced no changes in the expression level of puromycin-labeled proteins in both SOL and PLA muscles. Expression level of adiponectin in extensor digitorum longus (EDL) muscle was increased by aging, but not in SOL muscle. Aging had no effect on the expression level of AdipoR1 and AdipoR2 in both muscles. Phosphorylation level of AMPK in EDL was increased by aging, but not SOL muscle. Results from this study suggest that high level of circulating adiponectin may induce skeletal muscle atrophy, especially fast-type muscle.


Subject(s)
Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Receptors, Adiponectin/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Blotting, Western , Cell Line , Dose-Response Relationship, Drug , Gene Knockdown Techniques , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/ultrastructure , Piperidines/pharmacology , Real-Time Polymerase Chain Reaction , Receptors, Adiponectin/agonists
8.
Int J Mol Sci ; 19(10)2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30262782

ABSTRACT

5'AMP-activated protein kinase (AMPK) plays an important role in the regulation of skeletal muscle mass and fiber-type distribution. However, it is unclear whether AMPK is involved in muscle mass change or transition of myosin heavy chain (MyHC) isoforms in response to unloading or increased loading. Here, we checked whether AMPK controls muscle mass change and transition of MyHC isoforms during unloading and reloading using mice expressing a skeletal-muscle-specific dominant-negative AMPKα1 (AMPK-DN). Fourteen days of hindlimb unloading reduced the soleus muscle weight in wild-type and AMPK-DN mice, but reduction in the muscle mass was partly attenuated in AMPK-DN mice. There was no difference in the regrown muscle weight between the mice after 7 days of reloading, and there was concomitantly reduced AMPKα2 activity, however it was higher in AMPK-DN mice after 14 days reloading. No difference was observed between the mice in relation to the levels of slow-type MyHC I, fast-type MyHC IIa/x, and MyHC IIb isoforms following unloading and reloading. The levels of 72-kDa heat-shock protein, which preserves muscle mass, increased in AMPK-DN-mice. Our results indicate that AMPK mediates the progress of atrophy during unloading and regrowth of atrophied muscles following reloading, but it does not influence the transition of MyHC isoforms.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Hindlimb Suspension/adverse effects , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myosin Heavy Chains/metabolism , AMP-Activated Protein Kinases/genetics , Animals , HSP72 Heat-Shock Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiopathology , Muscular Atrophy/etiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Isoforms/metabolism , Sirtuin 1/metabolism
9.
Br J Nutr ; 117(1): 21-29, 2017 01.
Article in English | MEDLINE | ID: mdl-28093090

ABSTRACT

Diets enriched with advanced glycation end products (AGE) have recently been related to muscle dysfunction processes. However, it remains unclear whether long-term exposure to an AGE-enriched diet impacts physiological characteristics of skeletal muscles. Therefore, we explored the differences in skeletal muscle mass, contractile function and molecular responses between mice receiving a diet high in AGE (H-AGE) and low in AGE (L-AGE) for 16 weeks. There were no significant differences between L-AGE and H-AGE mice with regard to body weight, food intake or epididymal fat pad weight. However, extensor digitorum longus (EDL) and plantaris (PLA) muscle weights in H-AGE mice were lower compared with L-AGE mice. Higher levels of N ε -(carboxymethyl)-l-lysine, a marker for AGE, in EDL muscles of H-AGE mice were observed compared with L-AGE mice. H-AGE mice showed lower muscle strength and endurance in vivo and lower muscle force production of PLA muscle in vitro. mRNA expression levels of myogenic factors including myogenic factor 5 and myogenic differentiation in EDL muscle were lower in H-AGE mice compared with L-AGE mice. The phosphorylation status of 70-kDa ribosomal protein S6 kinase Thr389, an indicator of protein synthesis signalling, was lower in EDL muscle of H-AGE mice than that of L-AGE mice. These findings suggest that long-term exposure to an AGE-enriched diet impairs skeletal muscle growth and muscle contractile function, and that these muscle dysfunctions may be attributed to the inhibition of myogenic potential and protein synthesis.


Subject(s)
Glycation End Products, Advanced/administration & dosage , Muscle Contraction/drug effects , Muscle, Skeletal/growth & development , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet , Gene Expression Regulation/drug effects , Glycation End Products, Advanced/toxicity , Lysine/analogs & derivatives , Lysine/metabolism , Male , Mice , Mice, Inbred ICR , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
10.
Physiol Rep ; 3(11)2015 Nov.
Article in English | MEDLINE | ID: mdl-26542263

ABSTRACT

Heat stress (HS) stimulates heat shock protein (HSP) 72 mRNA expression, and the period after an increase in HSP72 protein is characterized by enhanced glucose metabolism in skeletal muscle. We have hypothesized that, prior to an increase in the level of HSP72 protein, HS activates glucose metabolism by acutely stimulating 5'-AMP-activated protein kinase (AMPK). Rat epitrochlearis muscle was isolated and incubated either with or without HS (42°C) for 10 and 30 min. HS for 30 min led to an increase in the level of Hspa1a and Hspa1b mRNA but did not change the amount of HSP72 protein. However, HS for both 10 and 30 min led to a significant increase in the rate of 3-O-methyl-d-glucose (3MG) transport, and the stimulatory effect of 3MG transport was completely blocked by cytochalasin B. HS-stimulated 3MG transport was also inhibited by dorsomorphin but not by wortmannin. HS led to a decrease in the concentration of ATP, phosphocreatine, and glycogen, to an increase in the level of phosphorylation of AMPKα Thr(172), and to an increase in the activity of both AMPKα1 and AMPKα2. HS did not affect the phosphorylation status of insulin receptor signaling or Ca(2+)/calmodulin-dependent protein kinase II. These results suggest that HS acts as a rapid stimulator of insulin-independent glucose transport, at least in part by stimulating AMPK via decreased energy status. Although further research is warranted, heat treatment of skeletal muscle might be a promising method to promote glucose metabolism acutely.

11.
Am J Physiol Endocrinol Metab ; 309(7): E651-62, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26244519

ABSTRACT

AMPK is considered to have a role in regulating skeletal muscle mass. However, there are no studies investigating the function of AMPK in modulating skeletal muscle mass during atrophic conditions. In the present study, we investigated the difference in unloading-associated muscle atrophy and molecular functions in response to 2-wk hindlimb suspension between transgenic mice overexpressing the dominant-negative mutant of AMPK (AMPK-DN) and their wild-type (WT) littermates. Male WT (n = 24) and AMPK-DN (n = 24) mice were randomly divided into two groups: an untreated preexperimental control group (n = 12 in each group) and an unloading (n = 12 in each group) group. The relative soleus muscle weight and fiber cross-sectional area to body weight were decreased by ∼30% in WT mice by hindlimb unloading and by ∼20% in AMPK-DN mice. There were no changes in puromycin-labeled protein or Akt/70-kDa ribosomal S6 kinase signaling, the indicators of protein synthesis. The expressions of ubiquitinated proteins and muscle RING finger 1 mRNA and protein, markers of the ubiquitin-proteasome system, were increased by hindlimb unloading in WT mice but not in AMPK-DN mice. The expressions of molecules related to the protein degradation system, phosphorylated forkhead box class O3a, inhibitor of κBα, microRNA (miR)-1, and miR-23a, were decreased only in WT mice in response to hindlimb unloading, and 72-kDa heat shock protein expression was higher in AMPK-DN mice than in WT mice. These results imply that AMPK partially regulates unloading-induced atrophy of slow-twitch muscle possibly through modulation of the protein degradation system, especially the ubiquitin-proteasome system.


Subject(s)
AMP-Activated Protein Kinases/physiology , Muscle Fibers, Slow-Twitch/pathology , Muscular Atrophy/etiology , Muscular Atrophy/genetics , AMP-Activated Protein Kinases/genetics , Animals , Corticosterone/blood , Genes, Dominant , Hindlimb Suspension , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Fibers, Slow-Twitch/metabolism , Muscular Atrophy/blood , Muscular Atrophy/pathology , Organ Size/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis
12.
J Sports Sci Med ; 14(2): 297-303, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25983578

ABSTRACT

Conservative therapies, mainly resting care for the damaged muscle, are generally used as a treatment for skeletal muscle injuries (such as muscle fragmentation). Several past studies reported that microcurrent electrical neuromuscular stimulation (MENS) facilitates a repair of injured soft tissues and shortens the recovery period. However, the effects of MENS on the regeneration in injured skeletal muscle are still unclear. The purpose of this study was to investigate the effect of MENS on the regenerative process of injured skeletal muscle and to elucidate whether satellite cells in injured skeletal muscle are activated by MENS by using animal models. Male C57BL/6J mice, aged 7 weeks old, were used (n = 30). Mice were randomly divided into two groups: (1) cardiotoxin (CTX)-injected (CX, n = 15) and (2) CTX-injected with MENS treatment (MX, n=15) groups. CTX was injected into tibialis anterior muscle (TA) of mice in CX and MX groups to initiate the necrosis-regeneration cycle of the muscle. TA was dissected 1, 2, and 3 weeks after the injection. Muscle weight, muscle protein content, the mean cross-sectional areas of muscle fibers, the relative percentage of fibers having central nuclei, and the number of muscle satellite cells were evaluated. MENS facilitated the recovery of the muscle dry weight and protein content relative to body weight, and the mean cross-sectional areas of muscle fibers in CTX-induced injured TA muscle. The number of Pax7-positive muscle satellite cells was increased by MENS during the regenerating period. Decrease in the percentages of fibers with central nuclei after CTX-injection was facilitated by MENS. MENS may facilitate the regeneration of injured skeletal muscles by activating the regenerative potential of skeletal muscles. Key pointsMicrocurrent electrical neuromuscular stimulation (MENS) facilitated the recovery of the relative muscle dry weight, the relative muscle protein content, and the mean cross-sectional areas of muscle fibers of injured TA muscle in mice.The number of satellite cells was increased by MENS during the regenerating phase of injured skeletal muscle.Decrease in the percentages of fibers with central nuclei was facilitated by MENS.MENS may facilitate the regeneration of injured skeletal muscles.

13.
Biochem Biophys Res Commun ; 453(1): 81-5, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25256746

ABSTRACT

Salicylate (SAL) has been recently implicated in the antidiabetic effect in humans. We assessed whether 5'-AMP-activated protein kinase (AMPK) in skeletal muscle is involved in the effect of SAL on glucose homeostasis. Rat fast-twitch epitrochlearis and slow-twitch soleus muscles were incubated in buffer containing SAL. Intracellular concentrations of SAL increased rapidly (<5 min) in both skeletal muscles, and the Thr(172) phosphorylation of the α subunit of AMPK increased in a dose- and time-dependent manner. SAL increased both AMPKα1 and AMPKα2 activities. These increases in enzyme activity were accompanied by an increase in the activity of 3-O-methyl-D-glucose transport, and decreases in ATP, phosphocreatine, and glycogen contents. SAL did not change the phosphorylation of insulin receptor signaling including insulin receptor substrate 1, Akt, and p70 ribosomal protein S6 kinase. These results suggest that SAL may be transported into skeletal muscle and may stimulate AMPK and glucose transport via energy deprivation in multiple muscle types. Skeletal muscle AMPK might be part of the mechanism responsible for the metabolic improvement induced by SAL.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Insulin/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Salicylic Acid/pharmacology , AMP-Activated Protein Kinases/chemistry , Animals , Biological Transport, Active/drug effects , Energy Metabolism/drug effects , Hypoglycemic Agents/pharmacology , Male , Muscle Fibers, Fast-Twitch/drug effects , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/drug effects , Muscle Fibers, Slow-Twitch/metabolism , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Threonine/chemistry
14.
Am J Physiol Endocrinol Metab ; 306(3): E344-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24347059

ABSTRACT

5'-AMP-activated protein kinase (AMPK) plays an important role as a negative regulator of skeletal muscle mass. However, the precise mechanism of AMPK-mediated regulation of muscle mass is not fully clarified. Heat shock proteins (HSPs), stress-induced molecular chaperones, are related with skeletal muscle adaptation, but the association between AMPK and HSPs in skeletal muscle hypertrophy is unknown. Thus, we investigated whether AMPK regulates hypertrophy by mediating HSPs in C2C12 cells. The treatment with AICAR, a potent stimulator of AMPK, decreased 72-kDa HSP (HSP72) expression, whereas there were no changes in the expressions of 25-kDa HSP, 70-kDa heat shock cognate, and heat shock transcription factor 1 in myotubes. Protein content and diameter were less in the AICAR-treated myotubes in those without treatment. AICAR-induced suppression of myotube hypertrophy and HSP72 expression was attenuated in the siRNA-mediated AMPKα knockdown myotubes. AICAR increased microRNA (miR)-1, a modulator of HSP72, and the increase of miR-1 was not induced in AMPKα knockdown condition. Furthermore, siRNA-mediated HSP72 knockdown blocked AICAR-induced inhibition of myotube hypertrophy. AICAR upregulated the gene expression of muscle Ring-finger 1, and this alteration was suppressed in either AMPKα or HSP72 knockdown myotubes. The phosphorylation of p70 S6 kinase Thr(389) was downregulated by AICAR, whereas this was attenuated in AMPKα, but not in HSP72, knockdown myotubes. These results suggest that AMPK inhibits hypertrophy through, in part, an HSP72-associated mechanism via miR-1 and protein degradation pathways in skeletal muscle cells.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , HSP72 Heat-Shock Proteins/physiology , Muscle Fibers, Skeletal/pathology , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/genetics , Aminoimidazole Carboxamide/pharmacology , Animals , Cells, Cultured , Enzyme Activation/drug effects , Enzyme Activation/physiology , HSP72 Heat-Shock Proteins/antagonists & inhibitors , Hypertrophy/chemically induced , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Proteolysis/drug effects , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
15.
PLoS One ; 8(12): e81929, 2013.
Article in English | MEDLINE | ID: mdl-24324732

ABSTRACT

The purpose of this study was to investigate the expression level of adiponectin and its related molecules in hypertrophied and atrophied skeletal muscle in mice. The expression was also evaluated in C2C12 myoblasts and myotubes. Both mRNA and protein expression of adiponectin, mRNA expression of adiponectin receptor (AdipoR) 1 and AdipoR2, and protein expression of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) were observed in C2C12 myoblasts. The expression levels of these molecules in myotubes were higher than those in myoblasts. The expression of adiponectin-related molecules in soleus muscle was observed at mRNA (adiponectin, AdipoR1, AdipoR2) and protein (adiponectin, APPL1) levels. The protein expression levels of adiponectin and APPL1 were up-regulated by 3 weeks of functional overloading. Down-regulation of AdipoR1 mRNA, but not AdipoR2 mRNA, was observed in atrophied soleus muscle. The expression of adiponectin protein, AdipoR1 mRNA, and APPL1 protein was up-regulated during regrowth of unloading-associated atrophied soleus muscle. Mechanical loading, which could increase skeletal muscle mass, might be a useful stimulus for the up-regulations of adiponectin and its related molecules in skeletal muscle.


Subject(s)
Adiponectin/metabolism , Gravitation , Muscle, Skeletal/metabolism , Up-Regulation , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Gene Expression Regulation , Hindlimb/physiology , Male , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Myoblasts/metabolism , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Adiponectin/genetics , Receptors, Adiponectin/metabolism , Weight-Bearing
16.
Physiol Rep ; 1(3): e00071, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24303143

ABSTRACT

The purpose of this study was to investigate a role of heat shock transcription factor 1 (HSF1)-mediated stress response during regeneration of injured soleus muscle by using HSF1-null mice. Cardiotoxin (CTX) was injected into the left muscle of male HSF1-null and wild-type mice under anesthesia with intraperitoneal injection of pentobarbital sodium. Injection of physiological saline was also performed into the right muscle. Soleus muscles were dissected bilaterally 2 and 4 weeks after the injection. The relative weight and fiber cross-sectional area in CTX-injected muscles of HSF1-null, not of wild-type, mice were less than controls with injection of physiological saline 4 weeks after the injury, indicating a slower regeneration. Injury-related increase of Pax7-positive muscle satellite cells in HSF1-null mice was inhibited versus wild-type mice. HSF1-deficiency generally caused decreases in the basal expression levels of heat shock proteins (HSPs). But the mRNA expression levels of HSP25 and HSP90α in HSF1-null mice were enhanced in response to CTX-injection, compared with wild-type mice. Significant up-regulations of proinflammatory cytokines, such as interleukin (IL) -6, IL-1ß, and tumor necrosis factor mRNAs, with greater magnitude than in wild-type mice were observed in HSF1-deficient mouse muscle. HSF1 and/or HSF1-mediated stress response may play a key role in the regenerating process of injured skeletal muscle. HSF1 deficiency may depress the regenerating process of injured skeletal muscle via the partial depression of increase in Pax7-positive satellite cells. HSF1-deficiency-associated partial depression of skeletal muscle regeneration might also be attributed to up-regulation of proinflammatory cytokines.

17.
PLoS One ; 8(10): e77788, 2013.
Article in English | MEDLINE | ID: mdl-24167582

ABSTRACT

Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1ß and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.


Subject(s)
DNA-Binding Proteins/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Stress, Physiological , Transcription Factors/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , Heat Shock Transcription Factors , Hypertrophy/genetics , Hypertrophy/metabolism , Hypertrophy/pathology , Interleukin-6/biosynthesis , Interleukin-6/genetics , Male , Mice , Mice, Inbred ICR , Mice, Mutant Strains , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Organ Size , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Transcription Factors/genetics
18.
Int J Med Sci ; 10(10): 1286-94, 2013.
Article in English | MEDLINE | ID: mdl-23983587

ABSTRACT

Microcurrent electrical nerve stimulation (MENS) has been used to facilitate recovery from skeletal muscle injury. However, the effects of MENS on unloading-associated atrophied skeletal muscle remain unclear. Effects of MENS on the regrowing process of unloading-associated atrophied skeletal muscle were investigated. Male C57BL/6J mice (10-week old) were randomly assigned to untreated normal recovery (C) and MENS-treated (M) groups. Mice of both groups are subjected to continuous hindlimb suspension (HS) for 2 weeks followed by 7 days of ambulation recovery. Mice in M group were treated with MENS for 60 min 1, 3, and 5 days following HS, respectively, under anesthesia. The intensity, the frequency, and the pulse width of MENS were set at 10 µA, 0.3 Hz, and 250 msec, respectively. Soleus muscles were dissected before and immediately after, 1, 3 and 7 days after HS. Soleus muscle wet weight and protein content were decreased by HS. The regrowth of atrophied soleus muscle in M group was faster than that in C group. Decrease in the reloading-induced necrosis of atrophied soleus was facilitated by MENS. Significant increases in phosphorylated levels of p70 S6 kinase and protein kinase B (Akt) in M group were observed, compared with C group. These observations are consistent with that MENS facilitated regrowth of atrophied soleus muscle. MENS may be a potential extracellular stimulus to activate the intracellular signals involved in protein synthesis.


Subject(s)
Electric Stimulation Therapy/methods , Muscle, Skeletal/metabolism , Muscular Atrophy/therapy , Animals , Male , Mice , Mice, Inbred C57BL
19.
Mol Cell Biochem ; 369(1-2): 45-53, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22733363

ABSTRACT

Effects of heat stress on skeletal muscle mass in young and aged mice were investigated. Young (7-week) and aged (106-week) male C57BL/6J mice were randomly assigned to control and heat-stressed groups in each age. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anesthesia. Seven days after the exposure, soleus muscles were dissected from both hindlimbs. Protein content and the relative composition of Type II fibers in aged soleus were lower than those in young muscle. In aged soleus, higher baseline expression levels of HSP25, HSP72, and cathepsin L were observed compared with those in young muscle (p < 0.05). However, there were no significant differences in the expression levels of phosphorylated p70 S6 kinase (p-p70S6K), calpain 1, and calpain 2 of soleus between two age groups. A significant increase in muscle mass of both age groups was induced by heat stress (p < 0.05). Heat stress also upregulated the expressions of HSP25, HSP72, and p-p70S6K in both ages (p < 0.05). On the other hand, a significant decrease in cathepsin L expression by heating was observed in aged soleus, but not in young (p < 0.05). Both the percentage of Type I fibers and the expression of calpains in both age groups were unchanged following heat stress. Heat stress-associated downregulation of cathepsin L may be attributed to the upregulation of HSP72, which stabilizes lysosomal membranes (p < 0.05). Upregulations of HSP25, HSP72, and p-p70S6K and/or the downregulation of cathepsin L may play a role in heat stress-associated muscle hypertrophy in aged soleus muscle.


Subject(s)
Cathepsin L/metabolism , HSP27 Heat-Shock Proteins/metabolism , HSP72 Heat-Shock Proteins/metabolism , Muscle, Skeletal , Aging , Animals , Gene Expression , Hot Temperature , Lysosomes/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...