Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 116(18): 5364-71, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22506879

ABSTRACT

Antifreeze proteins (AFPs) and poly(vinyl alcohol) (PVA) are known as anti-ice nucleating agents (anti-INAs), which inhibit ice nucleation initiated by ice nucleating agents (INAs). Although the effectiveness of anti-INAs depends on the type of INA, most previous studies on anti-INAs used only a few types of biological INAs as targets to inactivate. In this study, the effects of fish AFPs (AFP I and AFP III) and PVA on the ice nucleating activity of silver iodide (AgI) were measured by using emulsified solutions. Results showed that AgI was inactivated not only by AFPs and PVA but also by two other polymers previously not considered as anti-INAs, namely, poly(vinylpyrrolidone) and poly(ethylene glycol). Even in the presence of AgI, a non-negligible fraction, typically more than 10%, of emulsified droplets of these anti-INA solutions at 1.0 mg mL(-1) was supercooled to about -37 °C, which corresponds to ice nucleation temperature measured in the absence of AgI.


Subject(s)
Antifreeze Proteins/chemistry , Fish Proteins/chemistry , Ice , Iodides/chemistry , Polyvinyl Alcohol/chemistry , Silver Compounds/chemistry , Animals , Polyvinyl Alcohol/chemical synthesis
2.
J Phys Chem B ; 115(24): 7914-22, 2011 Jun 23.
Article in English | MEDLINE | ID: mdl-21619040

ABSTRACT

Antifreeze protein (AFP) III and poly(vinyl alcohol) (PVA) are known as anti-ice nucleating agents (anti-INAs), which inhibit heterogeneous ice nucleation. However, the effectiveness of these anti-INAs in inhibiting ice nucleation in water-in-oil (W/O) emulsions, in which homogeneous ice nucleation can be experimentally simulated, is unclear. In this study, the ice nucleation temperature in emulsified solutions of AFP III, PVA, and other nonanti-INA polymers was measured, and then the nucleation rate was analyzed based on classical nucleation theory. Results showed that ice nucleation was surface-initiated and, except for PVA solutions, probably caused heterogeneously by the emulsifier, SPAN 65, at the droplet surfaces. In this nucleation mode, AFP III had no significant effect on the ice nucleation rate. In contrast, PVA exhibited ice-nucleating activity only at the droplet surfaces, suggesting that the nucleation is due to the interaction between PVA and SPAN 65.

SELECTION OF CITATIONS
SEARCH DETAIL
...