Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Open Bio ; 11(7): 2019-2032, 2021 07.
Article in English | MEDLINE | ID: mdl-34058077

ABSTRACT

HnRNP K protein is a heterogeneous nuclear ribonucleoprotein which has been proposed to be involved in the leukemogenesis of acute promyelocytic leukemia (APL), as well as in differentiation induced by all-trans retinoic acid (ATRA). We previously demonstrated a connection between SET and hnRNP K function in head and neck squamous cell carcinoma (HNSCC) cells related to splicing processing. The objective of this study was to characterize the participation of hnRNP K and SET proteins in ATRA-induced differentiation in APL. We observed higher (5- to 40-fold) levels of hnRNP K and SET mRNA in APL patients at the diagnosis phase compared with induction and maintenance phases. hnRNP K knockdown using short-hairpin RNA led to cell death in ATRA-sensitive NB4 and resistant NB4-R2 cells by apoptosis with SET cleavage. In addition, hnRNP K knockdown increased granulocytic differentiation in APL cells, mainly in NB4-R2 with ATRA. hnRNP K knockdown had an effect similar to that of treatment with U0126 (an meiosis-specific serine/threonine protein kinase/ERK inhibitor), mainly in NB4-R2 cells. SET knockdown in APL cells revealed that apoptosis induction in cells with hnRNP K knockdown occurred by SET cleavage rather than by reduction in SET protein. Transplantation of NB4-R2 cells into nude mice confirmed that arsenic trioxide (ATO) combined with U0126 has higher potential against tumor progression when compared to ATO. Therefore, hnRNP K/SET and ERK are potential therapeutic targets for both antineoplastic leukemia therapy and relapsed APL patients with ATRA resistance.


Subject(s)
Leukemia, Promyelocytic, Acute , Animals , Arsenic Trioxide/metabolism , Arsenic Trioxide/therapeutic use , Heterogeneous-Nuclear Ribonucleoprotein K/genetics , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/metabolism , Mice , Mice, Nude , Tretinoin/metabolism , Tretinoin/pharmacology
2.
Eur J Pharmacol ; 882: 173268, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32569675

ABSTRACT

As SET protein is overexpressed and PP2A activity is reduced in oral squamous cell carcinoma (OSCC), this study aimed to assess the effects induced by OP449, a PP2A activator/SET inhibitor, on OSCC cells in vitro, and its potential either isolated or combined with FTY720, a PP2A activator/sphingosine kinase 1 antagonist, as antitumoral therapy in vivo. SET protein was analyzed in cells by immunoblotting and cancer stem cells by aldehyde dehydrogenase 1 assay (ALDH1). The cytotoxicity of OP449 was determined in five OSCC lineages by resazurin assay. Molecular actions of OP449 in SET targets were determined by immunoblotting. The coefficient of drug interaction (CDI) was used to characterize the synergism of OP449 and FTY720. The xenograft HN12 tumor model in nude mice was used to assess the antitumoral effect of OP449 and/or FTY720. HN12 (metastatic) cells showed higher SET and ALDH1 levels, and together with SCC9 cells were selected for molecular analysis. OP449 altered several SET functions/targets, such as histone H3 acetylation and NFkB. A synergism in cytotoxicity was observed when HN12 and SCC9 cells were pre-treated with 2 µM OP449 in combination with 15 µM FTY720 (CDI = 0.27 ± 0.088). Nude mice bearing xenograft HN12 tumors treated with OP449 and FTY720 showed reduced tumor mass. Moreover, NFkB was reduced in tumors after treatment. OP449 targets several SET functions, not only PP2A inhibition. Besides, OP449 plus FTY720 has a synergistic antitumoral effect on OSCC. Our results suggest new combined therapies and highlight SET and NFκB signaling as targets for OSCC therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Fingolimod Hydrochloride/therapeutic use , Mouth Neoplasms/drug therapy , Peptides/therapeutic use , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA-Binding Proteins/metabolism , Drug Synergism , Fingolimod Hydrochloride/pharmacology , Histone Chaperones/metabolism , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms/metabolism , NF-kappa B/metabolism , Peptides/pharmacology , Protein Phosphatase 2/metabolism , Sphingosine 1 Phosphate Receptor Modulators/pharmacology
3.
Eur J Pharmacol ; 819: 198-206, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29221949

ABSTRACT

This study aims to examine the effects of a new 1,4-dihydropyridine derivative, VdiE-2N, on cell signaling pathways and mitochondrial events in head and neck squamous cell carcinoma (HNSCC) cells, and on a mice model of xenograft tumor growth/cell proliferation. Four HNSCC cell lines (HN13, HN12, HN6, and CAL27), HEK293 cells (human embryonic kidney 293 cells), and human oral healthy mucosa fibroblasts (OHMF) were used for in vitro assessment of cell viability (resazurin assay) and invasion capacity (modified Boyden chamber assay), and mitochondrial membrane potential (JC-1 fluorescence assay), morphology (transmission electron microscopy), and number of mitochondria (MitoTracker® imaging). SET and pDRP1 proteins were analyzed by immunofluorescence, and proteins involved in cell death/survival pathways were analyzed by Western blotting. HN12 xenograft tumors were established in the flank of Balb/c nude mice, and their characteristics and sensitivity to VdiE-2N were determined by immunohistochemistry and histology. VdiE-2N decreased cell viability in HNSCC cells (IC50 = 9.56 and 22.45µM for HN13 and HN12 cells, respectively) more strongly than it decreased cell viability in OHMF and HEK293 cells (IC50 = 32.90 and > 50µM, respectively). In HN13 cells, VdiE-2N dissipated mitochondrial membrane potential and altered the mitochondria size, shape, and number in a concentration-dependent manner, as well as it induced apoptosis and reduced their invasion capacity. Treatment of mice bearing xenograft tumors with VdiE-2N significantly diminished proliferation of cancer cells. Therefore, VdiE-2N induces HNSCC cell death in vitro through mitochondria-mediated apoptotic pathways and dampens tumor growth in vivo, thus supporting a potential anti-cancer effect.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/pathology , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Head and Neck Neoplasms/pathology , Animals , Apoptosis/drug effects , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc/genetics , Head and Neck Neoplasms/blood supply , Head and Neck Neoplasms/drug therapy , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondrial Size/drug effects , Neoplasm Invasiveness , Neovascularization, Pathologic/drug therapy , Squamous Cell Carcinoma of Head and Neck , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...