Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543503

ABSTRACT

Heterotrophic microorganism Escherichia coli LS5218 was cultured with flesh green alga Chlamydomonas reinhardtii C-9: NIES-2235 as a nutrient supplier. In order to evaluate the cell response of Escherichia coli with Chlamydomonas reinhardtii, Escherichia coli was evaluated with microbial methods and comprehensive gene transcriptional analyses. Escherichia coli with Chlamydomonas reinhardtii showed a specific growth rate (µmax) of 1.04 ± 0.27, which was similar to that for cells growing in Luria-Bertani medium (µmax = 1.20 ± 0.40 h-1). Furthermore, comparing the cellular responses of Escherichia coli in a green-algae-containing medium with those in the Luria-Bertani medium, transcriptomic analysis showed that Escherichia coli upregulated gene transcription levels related to glycolysis, 5-phospho-d-ribosyl-1-diphosphate, and lipid synthesis; on the other hand, it decreased the levels related to lipid degradation. In particular, the transcription levels were increased by 103.7 times on pgm (p * < 0.05 (p = 0.015)) in glycolysis, and decreased by 0.247 times on fadE (p * < 0.05 (p = 0.041)) in lipolysis. These genes are unique and could regulate the direction of metabolism; these responses possibly indicate carbon source assimilation as a cellular response in Escherichia coli. This paper is the first report to clarify that Escherichia coli, a substance-producing strain, directly uses Chlamydomonas reinhardtii as a nutrient supplier by evaluation of the cellular responses analyzed with microbial methods and transcriptome analysis.

2.
Microorganisms ; 11(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37763977

ABSTRACT

Contamination with 2,4,6-trichloroanisole (TCA) often causes taste and odor (T&O) problems in drinking water due to its low odor threshold concentration. Microbial O-methylation of the precursor 2,4,6-trichlorophenol (TCP) would be the dominant mechanism for TCA formation. Simple and rapid measurement of TCP in the low concentration range is necessary to control the problems induced by TCA. In this study, the combination of microbial conversion and instrumental analysis was proposed as a method of TCP quantification. Fungi and bacteria were isolated from various water samples and examined for their ability to produce TCA from TCP. As a result, a strain exhibiting quantitative TCA production and a high growth rate was obtained and named Mycolicibacterium sp. CB14. The conversion rate of TCP to TCA by this strain was found to be high and stable (85.9 ± 5.3%), regardless of the applied TCP concentration, although within the range of 0.1-10 µg/L. The limits of detection and quantification for TCP by this proposed method were determined to be 5.2 ng/L and 17.3 ng/L, respectively. By improving the methods, Mycolicibacterium sp. CB14 could be used for the quantification of TCP at very low concentration levels, which is sufficient to manage the T&O problem caused by TCA.

3.
Antibiotics (Basel) ; 11(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884172

ABSTRACT

The usefulness of wastewater-based epidemiology (WBE) was proven during the COVID-19 pandemic, and the role of environmental monitoring of emerging infectious diseases has been recognized. In this study, the prevalence of carbapenem-resistant Enterobacterales (CRE) in Japanese environmental samples was measured in the context of applying WBE to CRE. A total of 247 carbapenem-resistant isolates were obtained from wastewater, treated wastewater, and river water. Treated wastewater was shown to be an efficient target for monitoring CRE. The results of the isolate analysis showed that WBE may be applicable to Escherichia coli-carrying New Delhi metallo-ß-lactamase (NDM)-type carbapenemase, the Enterobacter cloacae complex and Klebsiella pneumoniae complex-carrying IMP-type carbapenemase. In addition, a certain number of CRE isolated in this study carried Guiana extended spectrum (GES)-type carbapenemase although their clinical importance was unclear. Only a few isolates of Klebsiella aerogenes were obtained from environmental samples in spite of their frequent detection in clinical isolates. Neither the KPC-type, the oxacillinase (OXA)-type nor the VIM-type of carbapenemase was detected in the CRE, which reflected a low regional prevalence. These results indicated the expectation and the limitation of applying WBE to CRE.

4.
Microorganisms ; 10(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35208913

ABSTRACT

The biodegradable polyester poly-(R)-3-hydroxybutyrate [P(3HB)] is synthesized by a polymerizing enzyme called polyhydroxyalkanoate (PHA) synthase and accumulates in a wide variety of bacterial cells. Recently, we demonstrated the secretory production of a (R)-3HB oligomer (3HBO), a low-molecular-weight P(3HB), by using recombinant Escherichia coli expressing PHA synthases. The 3HBO has potential value as an antibacterial substance and as a building block for various polymers. In this study, to construct an efficient 3HBO production system, the coexpression of molecular chaperones and a PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4) was examined. First, genes encoding enzymes related to 3HBO biosynthesis (phaRCYB4, phaA and phaB derived from Ralstonia eutropha H16) and two types of molecular chaperones (groEL, groES, and tig) were introduced into the E. coli strains BW25113 and BW25113ΔadhE. As a result, coexpression of the chaperones promoted the enzyme activity of PHA synthase (approximately 2-3-fold) and 3HBO production (approximately 2-fold). The expression assay of each chaperone and PHA synthase subunit (PhaRYB4 and PhaCYB4) indicated that the combination of the two chaperone systems (GroEL-GroES and TF) supported the folding of PhaRYB4 and PhaCYB4. These results suggest that the utilization of chaperone proteins is a valuable approach to enhance the formation of active PHA synthase and the productivity of 3HBO.

5.
Int J Biol Macromol ; 167: 1290-1296, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33202278

ABSTRACT

Poly((R)-3-hydroxybutyrate) (P(3HB)) is a polyester that is synthesized and accumulated in many prokaryotic cells. Recently, a new culture method for the secretion of the intracellularly synthesized (R)-3-hydroxybutyrate oligomer (3HBO) from recombinant Escherichia coli cells was developed. In this study, we attempted to produce microbial 3HBO capped with a diethylene glycol terminal (3HBO-DEG) as a macromonomer for polymeric materials. First, we prepared recombinant E. coli strains harboring genes encoding various polyhydroxyalkanoate (PHA) synthases (PhaC, PhaEC or PhaRC) that can incorporate chain transfer (CT) agents such as DEG into the polymer's terminal and generate CT end-capped oligomers. To this end, each strain was cultivated under DEG supplemental conditions, and the synthesis of 3HBO-DEG was confirmed. As a result, the highest secretory production of 3HBO-DEG was observed for the PHA synthase derived from Bacillus cereus YB-4 (PhaRCYB4). To evaluate the usability of the secreted 3HBO-DEG as a macromonomer, 3HBO-DEG was purified from the culture medium and polymerized with 4,4'-diphenylmethane diisocyanate as a spacer compound. Characterization of the polymeric products revealed that 3HBO-based polyurethane was successfully obtained and was a flexible and transparent noncrystalline polymer, unlike P(3HB). These results suggested that microbial 3HBO-DEG is a promising platform building block for synthesizing polyurethane and various other polymers.


Subject(s)
3-Hydroxybutyric Acid/biosynthesis , Acyltransferases/genetics , Bacillus cereus/genetics , Escherichia coli/genetics , Ethylene Glycols/metabolism , Polyurethanes/chemistry , Polyurethanes/chemical synthesis , 3-Hydroxybutyric Acid/analysis , 3-Hydroxybutyric Acid/chemistry , Acyltransferases/metabolism , Chromatography, Gel , Culture Media , Escherichia coli/metabolism , Ethylene Glycols/chemistry , Isocyanates/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microorganisms, Genetically-Modified , Secretory Pathway/genetics , Spectroscopy, Fourier Transform Infrared , Thermography
6.
J Gen Appl Microbiol ; 65(4): 204-208, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-30700650

ABSTRACT

For enhancing the lactate (LA) fraction of poly(lactate-co-3-hydroxybutyrate)s [P(LA-co-3HB)s], an exogenous D-lactate dehydrogenase gene (ldhD) was introduced into Escherichia coli. Recombinant strains of E. coli DH5α, LS5218, and XL1-Blue harboring the ldhD gene from Lactobacillus acetotolerans HT, together with polyhydroxyalkanoate (PHA)-biosynthetic genes containing a lactate-polymerizing enzyme (modified PHA synthase) gene, accumulated the P(LA-co-3HB) copolymer from glucose under microaerobic conditions (100 strokes/min). The LA fraction of copolymers synthesized in the strains of DH5α, LS5218, and XL1-Blue were 19.8, 15.7, and 28.5 mol%, respectively, which were higher than those of the strains without the ldhD gene (<6.7 mol% of LA units). Introduction of the exogenous ldhD gene into E. coli strains resulted in an enhanced LA fraction in P(LA-co-3HB)s.


Subject(s)
Escherichia coli/metabolism , Lactate Dehydrogenases/genetics , Lactic Acid/biosynthesis , Lactobacillus/genetics , Polyesters/analysis , Glucose , Molecular Weight , Polyesters/metabolism , Polyhydroxyalkanoates/genetics
7.
J Biosci Bioeng ; 128(2): 191-197, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30799088

ABSTRACT

Novel lactate (LA)-based polymers containing medium-chain-length 3-hydroxyalkanoates (MCL-3HA) were produced in fadR-deficient Escherichia coli strains from glucose as the sole carbon source. The genes encoding LA and 3-hydroxybutyrate (3HB) monomers supplying enzymes [propionyl-CoA transferase (PCT), d-lactate dehydrogenase (D-LDH), ß-ketothiolase (PhaA), and NADPH-dependent acetoacetyl-CoA reductase (PhaB)], MCL-3HA monomers supplying enzymes [(R)-3-hydroxyacyl-ACP thioesterase (PhaG) and (R)-3-hydroxyacyl (3HA)-CoA ligase] via fatty acid biosynthesis pathway, and modified polyhydroxyalkanoate (PHA) synthase [PhaC1(STQK)] of Pseudomonas sp. 61-3 were introduced into E. coli LS5218. This resulted in the synthesis of a novel LA-based copolymer, P(LA-co-3HB-co-3HA). 1H-nuclear magnetic resonance (NMR) analysis revealed the composition of P(LA-co-3HB-co-3HA) to be 19.7 mol% LA (C3), 74.9 mol% 3HB (C4), and 5.4 mol% MCL-3HA units of C8 and C10. Furthermore, the recombinant E. coli CAG18497 strain carrying these genes, excluding the phaAB genes, accumulated P(92.0% LA-co-3HA) with a novel monomer composition containing C3, C8, C10, and C12. 13C-NMR analysis showed the existence of LA-3HA sequence in the polymer. The solvent cast film of P(92.0% LA-co-3HA) exhibited transparency similar to poly(lactic acid).


Subject(s)
DNA, Recombinant/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/metabolism , Lactic Acid/chemistry , Polymers/chemistry , Polymers/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Pseudomonas/genetics
8.
Bioengineering (Basel) ; 4(3)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28952548

ABSTRACT

Pseudomonas sp. 61-3 accumulates a blend of poly(3-hydroxybutyrate) [P(3HB)] homopolymer and a random copolymer, poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) [P(3HB-co-3HA)], consisting of 3HA units of 4-12 carbon atoms. Pseudomonas sp. 61-3 possesses two types of PHA synthases, PHB synthase (PhbC) and PHA synthases (PhaC1 and PhaC2), encoded by the phb and pha loci, respectively. The P(94 mol% 3HB-co-6 mol% 3HA) copolymer synthesized by the recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of phaC1 gene is known to have desirable physical properties and to be a flexible material with moderate toughness, similar to low-density polyethylene. In this study, we focused on the production of the P(3HB-co-3HA) copolymer using steamed soybean wastewater, a by-product in brewing miso, which is a traditional Japanese seasoning. The steamed soybean wastewater was spray-dried to produce a powder (SWP) and used as the sole nitrogen source for the synthesis of P(3HB-co-3HA) by the Pseudomonas sp. 61-3 recombinant strain. Hydrolyzed SWP (HSWP) was also used as a carbon and nitrogen source. P(3HB-co-3HA)s with relatively high 3HB fractions could be synthesized by a recombinant strain of Pseudomonas sp. 61-3 (phbC::tet) harboring additional copies of the phaC1 gene in the presence of 2% glucose and 10-20 g/L SWP as the sole nitrogen source, producing a PHA concentration of 1.0-1.4 g/L. When HSWP was added to a nitrogen- and carbon-free medium, the recombinant strain could synthesize PHA without glucose as a carbon source. The recombinant strain accumulated 32 wt% P(3HB-co-3HA) containing 80 mol% 3HB and 20 mol% medium-chain-length 3HA with a PHA concentration of 1.0 g/L when 50 g/L of HSWP was used. The PHA production yield was estimated as 20 mg-PHA/g-HSWP, which equates to approximately 1.0 g-PHA per liter of soybean wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...