Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
2.
Plants (Basel) ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674547

ABSTRACT

Conferring crops with resistance to multiple diseases is crucial for stable food production. Genetic engineering is an effective means of achieving this. The rice receptor-like cytoplasmic kinase BSR1 mediates microbe-associated molecular pattern-induced immunity. In our previous study, we demonstrated that rice lines overexpressing BSR1 under the control of the maize ubiquitin promoter exhibited broad-spectrum resistance to rice blast, brown spot, leaf blight, and bacterial seedling rot. However, unfavorable phenotypes were observed, such as a decreased seed germination rate and a partial darkening of husked rice. Herein, we present a strategy to address these unfavorable phenotypes using an OsUbi7 constitutive promoter with moderate expression levels and a pathogen-inducible PR1b promoter. Rice lines expressing BSR1 under the influence of both promoters maintained broad-spectrum disease resistance. The seed germination rate and coloration of husked rice were similar to those of the wild-type rice.

3.
Front Plant Sci ; 14: 1163358, 2023.
Article in English | MEDLINE | ID: mdl-37342126

ABSTRACT

In citrus breeding programs, male sterility is an important trait for developing seedless varieties. Sterility associated with the male sterile cytoplasm of Kishu mandarin (Kishu-cytoplasm) has been proposed to fit the cytoplasmic male sterility (CMS) model. However, it remains undetermined whether CMS in citrus is controlled by interactions between sterile cytoplasm and nuclear restorer-of-fertility (Rf) genes. Accordingly, mechanisms underlying the control of the wide phenotypic variation in pollen number for breeding germplasm should be elucidated. This study aimed to identify complete linkage DNA markers responsible for male sterility at the MS-P1 region based on fine mapping. Two P-class pentatricopeptide repeat (PPR) family genes were identified as candidates for Rf based on predicted mitochondrial localization and higher expression in a male fertile variety/selected strain than in a male sterile variety. Eleven haplotypes (HT1-HT11) at the MS-P1 region were defined based on genotyping of DNA markers. Association analysis of diplotypes at the MS-P1 region and the number of pollen grains per anther (NPG) in breeding germplasms harboring Kishu-cytoplasm revealed that the diplotypes in this region influenced NPG. Among these haplotypes, HT1 is a non-functional restorer-of-fertility (rf) haplotype; HT2, a less-functional Rf; HT3-HT5 are semi-functional Rfs; and HT6 and HT7 are functional Rfs. However, the rare haplotypes HT8-HT11 could not be characterized. Therefore, P-class PPR family genes in the MS-P1 region may constitute the nuclear Rf genes within the CMS model, and a combination of the seven haplotypes could contribute to phenotypic variation in the NPG of breeding germplasms. These findings reveal the genomic mechanisms of CMS in citrus and will contribute to seedless citrus breeding programs by selecting candidate seedless seedlings using the DNA markers at the MS-P1 region.

4.
Molecules ; 26(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467101

ABSTRACT

Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5'-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.


Subject(s)
Coffee/chemistry , Free Radical Scavengers , Obesity/drug therapy , Polyphenols , Tea/chemistry , Wine , Free Radical Scavengers/chemistry , Free Radical Scavengers/therapeutic use , Humans , Obesity/metabolism , Obesity/pathology , Polyphenols/chemistry , Polyphenols/therapeutic use
5.
PLoS One ; 13(7): e0200844, 2018.
Article in English | MEDLINE | ID: mdl-30016346

ABSTRACT

Seedlessness is one of the important traits in citrus breeding. Male sterility derived from Satsuma mandarin (Citrus unshiu) has been used in Japanese citrus breeding programs to obtain seedless cultivars. The efficiency of seedless cultivar breeding would be improved by developing a selection marker linked to seedlessness. In this study, we performed QTL mapping in 'Okitsu No. 46' × 'Okitsu No. 56' (O46-O56) crosses for the number of pollen grains per anther (NPG) and apparent pollen fertility (APF), two traits used as an index of male sterility, and detected a candidate QTL for NPG (MS-P1) on linkage group 8 with a significant LOD score (7.31) and 47% of variance explained. The QTL for APF (MS-F1) was detected on linkage group 6 with a significant LOD score (5.71) and 63.6% of variance explained. The role of both MS-P1 in reducing NPG and MS-F1 in decreasing APF were confirmed with the 'Okitsu No.46' × 'Kara' (O46-K) cross. Pedigree analysis inferred that both MS-P1 and MS-F1 in 'Okitsu No. 46' were derived from kunenbo (Citrus nobilis) through hassaku (C. hassaku) and 'Sweet Spring'. Cytoplasm analysis revealed that both male-sterile 'Sweet Spring' and 'Okitsu No. 46' have cytoplasm derived from Kishu (C. kinokuni hort. ex Tanaka), but the cytoplasm of male-sterile kunenbo and hassaku were derived from other varieties rather than Kishu. These results suggest that MS-P1 and MS-F1 primarily reduce the NPG and decrease APF, but their expression requires a cytoplasm derived from Kishu. These findings will improve our understanding of the molecular mechanism of male sterility in citrus and help to develop a DNA marker for seedless breeding in citrus.


Subject(s)
Chromosome Mapping , Citrus/genetics , Fruit/genetics , Plant Breeding , Quantitative Trait Loci , Alleles , Cytoplasm/metabolism , Genetic Linkage , Genetic Markers , Genotype , Haplotypes , Microsatellite Repeats , Phenotype
6.
Sci Rep ; 7(1): 4721, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680114

ABSTRACT

Novel genomics-based approaches such as genome-wide association studies (GWAS) and genomic selection (GS) are expected to be useful in fruit tree breeding, which requires much time from the cross to the release of a cultivar because of the long generation time. In this study, a citrus parental population (111 varieties) and a breeding population (676 individuals from 35 full-sib families) were genotyped for 1,841 single nucleotide polymorphisms (SNPs) and phenotyped for 17 fruit quality traits. GWAS power and prediction accuracy were increased by combining the parental and breeding populations. A multi-kernel model considering both additive and dominance effects improved prediction accuracy for acidity and juiciness, implying that the effects of both types are important for these traits. Genomic best linear unbiased prediction (GBLUP) with linear ridge kernel regression (RR) was more robust and accurate than GBLUP with non-linear Gaussian kernel regression (GAUSS) in the tails of the phenotypic distribution. The results of this study suggest that both GWAS and GS are effective for genetic improvement of citrus fruit traits. Furthermore, the data collected from breeding populations are beneficial for increasing the detection power of GWAS and the prediction accuracy of GS.


Subject(s)
Citrus/genetics , Genome-Wide Association Study/methods , Genomics/methods , Quantitative Trait Loci , Genome, Plant , Models, Genetic , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA
7.
Tree Physiol ; 37(5): 654-664, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28131994

ABSTRACT

In order to clarify whether high linalool content in citrus leaves alone induces strong field resistance to citrus canker caused by Xanthomonas citri subsp. citri (Xcc), and to assess whether this trait can be transferred to a citrus type highly sensitive to the bacterium, transgenic 'Hamlin' sweet orange (Citrus sinensis L. Osbeck) plants over-expressing a linalool synthase gene (CuSTS3-1) were generated. Transgenic lines (LIL) with the highest linalool content showed strong resistance to citrus canker when spray inoculated with the bacterium. In LIL plants inoculated by wounding (multiple-needle inoculation), the linalool level was correlated with the repression of the bacterial titer and up-regulation of defense-related genes. The exogenous application of salicylic acid, methyl jasmonate or linalool triggered responses similar to those constitutively induced in LIL plants. The linalool content in Ponkan mandarin leaves was significantly higher than that of leaves from six other representative citrus genotypes with different susceptibilities to Xcc. We propose that linalool-mediated resistance might be unique to citrus tissues accumulating large amounts of volatile organic compounds in oil cells. Linalool might act not only as a direct antibacterial agent, but also as a signal molecule involved in triggering a non-host resistance response against Xcc.


Subject(s)
Citrus/genetics , Disease Resistance/genetics , Monoterpenes/analysis , Plant Diseases/genetics , Xanthomonas/pathogenicity , Acyclic Monoterpenes , Citrus/microbiology , Gene Expression Regulation, Plant , Genes, Plant , Hydro-Lyases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology
8.
Plant J ; 89(4): 671-680, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27862521

ABSTRACT

Interactions between heat shock (HS) factors (HSFs) and heat shock response elements (HSEs) are important during the heat shock response (HSR) of flora and fauna. Moreover, plant HSFs that are involved in heat stress are also involved in abiotic stresses such as dehydration and cold as well as development, cell differentiation and proliferation. Because the specific combination of HSFs and HSEs involved in plants under heat stress remains unclear, the mechanism of their interaction has not yet been utilized in molecular breeding of plants for climate change. For the study reported herein, we compared the sequences of HS-inducible genes and their promoters in Arabidopsis, soybean, rice and maize and then designed an optimal HS-inducible promoter. Our analyses suggest that, for the four species, the abscisic acid-independent, HSE/HSF-dependent transcriptional pathway plays a major role in HS-inducible gene expression. We found that an 18-bp sequence that includes the HSE has an important role in the HSR, and that those sequences could be classified as representative of monocotyledons or dicotyledons. With the HS-inducible promoter designed based on our bioinformatic predictions, we were able to develop an optimal HS-specific inducible promoter for seedlings or single cells in roots. These findings demonstrate the utility of our HS-specific inducible promoter, which we expect will contribute to molecular breeding efforts and cell-targeted gene expression in specific plant tissues.


Subject(s)
Arabidopsis/genetics , Glycine max/genetics , Oryza/genetics , Promoter Regions, Genetic/genetics , Zea mays/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Hot Temperature , Plant Proteins/genetics , Promoter Regions, Genetic/physiology , Transcription Factors/genetics , Transcription, Genetic/genetics
9.
PLoS One ; 11(11): e0166969, 2016.
Article in English | MEDLINE | ID: mdl-27902727

ABSTRACT

Most indigenous citrus varieties are assumed to be natural hybrids, but their parentage has so far been determined in only a few cases because of their wide genetic diversity and the low transferability of DNA markers. Here we infer the parentage of indigenous citrus varieties using simple sequence repeat and indel markers developed from various citrus genome sequence resources. Parentage tests with 122 known hybrids using the selected DNA markers certify their transferability among those hybrids. Identity tests confirm that most variant strains are selected mutants, but we find four types of kunenbo (Citrus nobilis) and three types of tachibana (Citrus tachibana) for which we suggest different origins. Structure analysis with DNA markers that are in Hardy-Weinberg equilibrium deduce three basic taxa coinciding with the current understanding of citrus ancestors. Genotyping analysis of 101 indigenous citrus varieties with 123 selected DNA markers infers the parentages of 22 indigenous citrus varieties including Satsuma, Temple, and iyo, and single parents of 45 indigenous citrus varieties, including kunenbo, C. ichangensis, and Ichang lemon by allele-sharing and parentage tests. Genotyping analysis of chloroplast and mitochondrial genomes using 11 DNA markers classifies their cytoplasmic genotypes into 18 categories and deduces the combination of seed and pollen parents. Likelihood ratio analysis verifies the inferred parentages with significant scores. The reconstructed genealogy identifies 12 types of varieties consisting of Kishu, kunenbo, yuzu, koji, sour orange, dancy, kobeni mikan, sweet orange, tachibana, Cleopatra, willowleaf mandarin, and pummelo, which have played pivotal roles in the occurrence of these indigenous varieties. The inferred parentage of the indigenous varieties confirms their hybrid origins, as found by recent studies.


Subject(s)
Cell Nucleus/genetics , Chloroplasts/genetics , Citrus/genetics , DNA, Plant/genetics , Genetic Variation , Genome, Mitochondrial/genetics , Genomics , Citrus/classification , Genetic Markers/genetics , Genome, Plant/genetics , Genotyping Techniques , Phylogeny
10.
Molecules ; 21(10)2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27689985

ABSTRACT

Green tea has been shown to have beneficial effects against cancer, obesity, atherosclerosis, diabetes, bacterial and viral infections, and dental caries. The catechin (-)-epigallocatechin-3-gallate (EGCG) has shown the highest biological activity among green tea catechins (GTCs) in most of the studies. While several epidemiological studies have shown the beneficial effects of tea and GTCs on obesity, some studies have failed to do this. In addition, a large number of interventional clinical studies have shown these favorable effects, and cellular and animal experiments have supported those findings, and revealed the underlying anti-obesity mechanisms. One of the mechanisms is enhanced cellular production of reactive oxygen species, which is mediated through the pro-oxidant action of EGCG, leading to the activation of adenosine monophosphate-activated protein kinase, which suppresses gene and protein expression of enzymes and transcription factors involved in adipogenesis and lipogenesis, and stimulates those involved in lipolysis. Recently, scientific evidence supporting the beneficial anti-obesity effects of green tea and GTCs has been increasing. However, future investigations are still required to clarify the reasons for the inconsistent results reported in the human studies; to achieve this, careful adjustment of confounding factors will be required.

11.
Article in English | MEDLINE | ID: mdl-27634207

ABSTRACT

BACKGROUND: Green tea has been shown to have beneficial effects against a variety of diseases such as cancer, obesity, diabetes, cardiovascular disease, and neurodegenerative diseases. Through cellular, animal, and human experiments, green tea and its major component, epigallocatechin-3-gallate (EGCG) have been demonstrated to have anti-inflammatory effects. Our previous findings have indicated that green tea and EGCG suppress the gene and/or protein expression of inflammatory cytokines and inflammation-related enzymes. METHODS: Using bibliographic databases, particularly PubMed (provided by the http://www.ncbi.nlm.nih.gov/pubmed, US National Library of Medicine, National Institutes of Health, United States), we examined the potential usefulness of green tea/EGCG for the prevention and treatment of inflammatory diseases in human clinical and epidemiological studies. We also reviewed results from cellular and animal experiments and proposed action mechanisms. RESULTS: Most of the results from the human studies indicated the beneficial effects of green tea and tea catechins against inflammatory diseases. The cellular and animal studies also provided evidence for the favorable effects of green tea/EGCG. These results are compatible with our previous findings and can be largely explained by a mechanism wherein green tea/EGCG acts as an antioxidant to scavenge reactive oxygen species, leading to attenuation of nuclear factor-κB activity. CONCLUSION: Since green tea and EGCG have multiple targets and act in a pleiotropic manner, we may consider their usage to improve the quality of life in patients with inflammatory disease. Green tea and EGCG have beneficial health effects and no severe adverse effects; however, care should be taken to avoid overdosage, which may induce deleterious effects including hepatic injury.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Camellia sinensis , Cardiovascular Diseases/therapy , Catechin/analogs & derivatives , Diabetes Mellitus/therapy , Neoplasms/therapy , Neurodegenerative Diseases/therapy , Obesity/therapy , Tea/immunology , Animals , Catechin/chemistry , Catechin/therapeutic use , Humans , Inflammation Mediators/metabolism , Reactive Oxygen Species/metabolism , Tea/chemistry
12.
PLoS One ; 11(9): e0162408, 2016.
Article in English | MEDLINE | ID: mdl-27589237

ABSTRACT

Male sterility derived from Satsuma mandarin (Citrus unshiu) has been used in Japanese citrus breeding programs to obtain seedless cultivars, which is a desirable trait for consumers. Male sterility has often been evaluated by anther development or pollen fertility; however, the inheritance and heritability of male sterility derived from Satsuma is poorly understood. In this study, we investigated the mode of inheritance and broad-sense heritability of male sterility derived from Satsuma. Initially, we evaluated the total number of pollen grains per anther and apparent pollen fertility, as indicated by lactophenol blue staining, in 15 citrus cultivars and selections to understand the male sterility of Satsuma. The results indicated that male sterility was primarily caused by decreased number of pollen grains per anther in progeny of Satsuma. We also evaluated these traits in three F1 populations (hyuganatsu × 'Okitsu No. 56', 'Okitsu No. 46' × 'Okitsu No. 56' and 'Okitsu No. 46' × 'Kara'), of which the parents are derived from Satsuma. Individuals in these populations showed strong segregation for number of pollen grains per anther. The apparent fertility of pollen also showed segregation but was almost constant at 70%-90%. The estimated broad-sense heritability for the number of pollen grains per anther was as high as 0.898 in the 'Okitsu No. 46' × 'Okitsu No. 56' and 'Okitsu No. 46' × 'Kara' populations. These results indicated that the number of pollen grains per anther primarily determined male sterility among progeny of Satsuma, and this trait was inherited by the progeny. Development of DNA markers closely linked to male sterility using the F1 populations of 'Okitsu No. 46' × 'Okitsu No. 56' and 'Okitsu No. 46' × 'Kara' is expected to contribute to the breeding of novel seedless citrus cultivars.


Subject(s)
Citrus/genetics , Fruit/genetics , Plant Breeding , Fertility/genetics , Reproduction/genetics
13.
Food Chem ; 196: 577-83, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593530

ABSTRACT

We examined the influence of taste compounds on retronasal aroma sensation using a model chicken soup. The aroma intensity of a reconstituted flavour solution from which glutamic acid (Glu), inosine 5'-monophosphate (IMP), or phosphate was omitted was significantly lower (p<0.05) than that of the model soup. The aroma intensity of 0.4% NaCl solution containing the aroma chicken model (ACM) with added Glu and IMP was significantly higher (p<0.05) than that of 0.4% NaCl solution containing only ACM. The quantitative analyses showed that adding monosodium glutamate (MSG) to aqueous aroma solution containing only ACM enhanced the intensity of retronasal aroma sensation by 2.5-folds with increasing MSG concentration from 0% to 0.3%. Sensation intensity using an umami solution with added MSG and IMP was significantly higher than that with only MSG when the MSG concentration was 0.05%, 0.075%, or 0.1%. However, it plateaued when MSG concentration was beyond 0.3%.


Subject(s)
Flavoring Agents/analysis , Sodium Glutamate/analysis , Adult , Animals , Chickens , Female , Food Analysis , Humans , Inosine Monophosphate/analysis , Male , Sodium Chloride/analysis , Taste , Young Adult
14.
Plant Biotechnol J ; 14(4): 1127-38, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26448265

ABSTRACT

WRKY45 is an important transcription factor in the salicylic acid signalling pathway in rice that mediates chemical-induced resistance against multiple pathogens. Its constitutive overexpression confers extremely strong resistance against Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae to rice, but has adverse effects on agronomic traits. Here, a new strategy to confer rice with strong disease resistance without any negative effects on agronomic traits was established by expressing WRKY45 under the control of pathogen-responsive promoters in combination with a translational enhancer derived from a 5'-untranslated region (UTR) of rice alcohol dehydrogenase (ADH). Rice promoters that responded to M. oryzae and X. oryzae pv. oryzae infections within 24 h were identified, and 2-kb upstream sequences from nine of them were isolated, fused to WRKY45 cDNA with or without the ADH 5'-UTR, and introduced into rice. Although pathogen-responsive promoters alone failed to confer effective disease resistance, the use of the ADH 5'-UTR in combination with them, in particular the PR1b and GST promoters, enhanced disease resistance. Field trials showed that overall, PR1b promoter-driven (with ADH 5'-UTR) lines performed the best and one had agronomic traits comparable to control untransformed rice. Thus, expressing WRKY45 under the control of the PR1b promoter with the ADH 5'-UTR is an excellent strategy to develop disease-resistant rice, and the line established could serve as a mother line for breeding disease-resistant rice.


Subject(s)
Disease Resistance/genetics , Oryza/genetics , Oryza/microbiology , Plants, Genetically Modified/microbiology , 5' Untranslated Regions , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Magnaporthe/pathogenicity , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Xanthomonas/pathogenicity
15.
PLoS Pathog ; 11(10): e1005231, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26485146

ABSTRACT

Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2-OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants.


Subject(s)
Disease Resistance/physiology , Plant Proteins/metabolism , Signal Transduction/physiology , Stress, Physiological/physiology , Oryza , Phosphorylation , Plant Diseases , Transcription Factors/metabolism , Tyrosine/metabolism
17.
PLoS One ; 10(5): e0126872, 2015.
Article in English | MEDLINE | ID: mdl-25978450

ABSTRACT

An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , G-Box Binding Factors/genetics , Genes, Plant/physiology , Helix-Turn-Helix Motifs/genetics , Salt Tolerance/genetics , Arabidopsis/physiology , Arabidopsis Proteins/physiology , G-Box Binding Factors/physiology , Gene Knockout Techniques , Genes, Plant/genetics , Helix-Turn-Helix Motifs/physiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Salt Tolerance/physiology
18.
PLoS One ; 10(5): e0115502, 2015.
Article in English | MEDLINE | ID: mdl-25978457

ABSTRACT

Salinity represents a major abiotic stress factor that can adversely limit the production, quality and geographical distribution of crops. In this study we focused on dedifferentiated calli with fundamental cell functions, the salt tolerance of which had not been previously examined. The experimental approach was based on activation tagging without regeneration of plants for the identification of salt-tolerant mutants of Arabidopsis. Among 62,000 transformed calli that were screened, 18 potential mutants resistant to 150 mM NaCl were obtained. Thermal asymmetric interlaced (TAIL)-PCR was performed to determine the location of T-DNA integration in the genome. In one line, referred to as salt tolerant callus 1 (stc1), expression of a gene [At4g39800: myo-inositol-1-P-synthase 1 (MIPS1)] was considerably enhanced in calli. Plants regenerated from calli showed tolerance to salt in germination and subsequent growth. Retransformation of wild-type Arabidopsis with MIPS1 conferred salt tolerance, indicating that MIPS1 is the causal gene. The over-expression of MIPS1 increased the content of total inositol. The involvement of MIPS1 in salt tolerance through the fundamental cell growth has been proved in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Myo-Inositol-1-Phosphate Synthase/metabolism , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Myo-Inositol-1-Phosphate Synthase/genetics , Salt Tolerance , Sodium Chloride/pharmacology
19.
Plant Biotechnol J ; 13(6): 753-65, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25487714

ABSTRACT

The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.


Subject(s)
Genes, Plant , Magnaporthe/pathogenicity , Oryza/microbiology , Transcription Factors/genetics , Xanthomonas/pathogenicity , Oryza/genetics , Promoter Regions, Genetic
20.
Gastroenterol Res Pract ; 2014: 153935, 2014.
Article in English | MEDLINE | ID: mdl-25183968

ABSTRACT

Colorectal laterally spreading tumors (LSTs), which are classified into granular (LST-G) and nongranular (LST-NG) types, are a good indication for endoscopic treatment. In practice, the nongranular type is more difficult to remove endoscopically than the granular type. It might be assumed that some histological differences exist between these subtypes. The objective of this study was to analyze histological features of laterally spreading tumors and compare between the granular and the nongranular types. A total of 32 cases of LSTs resected endoscopically being intramucosal tumors with no previous treatment were analyzed. The disposition of the muscularis mucosae, the vascular density, and the degree of fibrosis of the submucosal layer were determined. The outline of the muscularis mucosae in LST-NG was almost flat, but that of LST-G was wavy. The submucosal vascular density was significantly greater in the LST-NGs (61.4 ± 24.3/mm(2)) than in the LST-Gs (43 ± 22.4/mm(2); P = 0.033). There was no clear difference in the degree of submucosal fibrosis between the subtypes. A flat disposition of the muscularis mucosae and a more densely vascularized submucosal layer were characteristics of LST-NGs compared to the LST-Gs. These findings may play a role when performing the endoscopic resection of LSTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...