Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Breed ; 42(7): 32, 2022 Jul.
Article in English | MEDLINE | ID: mdl-37313508

ABSTRACT

Chili peppers are important as vegetables and ornamental crops, because of the variety of fruit shapes and colors. Understanding of flower and fruit development in Capsicum is limited compared with closely related Solanaceae crops such as tomato. This study reports a novel malformed fruit mutant named malformed fruit-1 (maf-1), which was isolated from an ethyl methanesulfonate-induced mutant population of chili pepper. maf-1 exhibited homeotic changes in the floral bud, which were characterized by conversion of petals and stamens into sepal-like and carpel-like organs, respectively. In addition, the indeterminate formation of carpel-like tissue was observed. Genetic analysis demonstrated that the causative gene in maf-1 is a nonsense mutation in CaLFY. This is the first characterization of an lfy mutant in Capsicum. Unlike tomatoes, the CaLFY mutation did not affect the architecture of sympodial unit or flowering time but mainly affected the formation of flower organs. Gene expression analysis suggested that a nonsense mutation in CaLFY led to decreased expression of multiple class B genes, resulting in homeotic changes in the flower and fruit. This maf-1 mutant may provide new insights at the molecular level in understanding flower organ formation and the genetic manipulation of fruit shape in chili peppers. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01304-w.

2.
Plant Cell Rep ; 40(10): 1859-1874, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34283265

ABSTRACT

KEY MESSAGE: CAP biosynthesis in the pericarp of chili pepper fruits occurs with an ambiguous boundary in the placental septum and pericarp. Capsaicinoid (CAP) is a pungent ingredient of chili pepper fruits. Generally, CAP biosynthesis is limited to the placental septum of fruits, but it has been reported that its biosynthesis occurs even in the pericarp of some extremely pungent varieties, resulting in a substantial increase in total content. To examine the mechanism of CAP biosynthesis in the pericarp, comparative transcriptome analysis of a variety that produces CAP in the pericarp (MY) and a variety that does not (HB) was carried out. RNA-seq revealed that 2264 genes were differentially expressed in the MY pericarp compared with the HB pericarp. PCA analysis and GO enrichment analysis indicated that the MY pericarp has a gene expression profile more like placental septum than the HB pericarp. The gene expression of CAP biosynthesis-related genes in the MY pericarp changed coordinately with the placental septum during fruit development. In most Capsicum accessions including HB, the distribution of slender epidermal cells producing CAP was limited to the placental septum, and the morphological boundary between the placental septum and pericarp was clear. In some extremely pungent varieties such as MY, slender epidermal cells ranged from the placental septum to the pericarp region, and the pericarp was morphologically similar to the placental septum, such as the absence of large sub-epidermal cells and abundant spaces in the parenchymal tissue. Our data suggest that CAP biosynthesis in the pericarp occurred with an ambiguous boundary in the placental septum and pericarp. These findings contribute to further enhancement of CAP production in chili pepper fruits.


Subject(s)
Capsaicin/metabolism , Capsicum/anatomy & histology , Capsicum/genetics , Capsicum/metabolism , Fruit/metabolism , Capsicum/growth & development , Fruit/anatomy & histology , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Gene Ontology , Plant Proteins/genetics , Principal Component Analysis
3.
Plant J ; 100(4): 693-705, 2019 11.
Article in English | MEDLINE | ID: mdl-31323150

ABSTRACT

Capsaicinoids are unique compounds that give chili pepper fruits their pungent taste. Capsaicinoid levels vary widely among pungent cultivars, which range from low pungency to extremely pungent. However, the molecular mechanisms underlying this quantitative variation have not been elucidated. Our previous study identified various loss-of-function alleles of the pAMT gene which led to low pungency. The mutations in these alleles are commonly defined by Tcc transposon insertion and its footprint. In this study, we identified two leaky pamt alleles (pamtL1 and pamtL2 ) with different levels of putative aminotransferase (pAMT) activity. Notably, both alleles had a Tcc transposon insertion in intron 3, but the locations of the insertions within the intron were different. Genetic analysis revealed that pamtL1 , pamtL2 and a loss-of-function pamt allele reduced capsaicinoid levels to about 50%, 10% and less than 1%, respectively. pamtL1 and pamtL2 encoded functional pAMT proteins, but they exhibited lower transcript levels than the functional type. RNA sequencing analysis showed that intronic transposons disrupted splicing in intron 3, which resulted in simultaneous expression of functional pAMT mRNA and non-functional splice variants containing partial sequences of Tcc. The non-functional splice variants were more dominant in pamtL2 than in pamtL1 . This suggested that the difference in position of the intronic transposons could alter splicing efficiency, leading to different pAMT activities and reducing capsaicinoid content to different levels. Our results provide a striking example of allelic variations caused by intronic transposons; these variations contribute to quantitative differences in secondary metabolite contents.


Subject(s)
Capsicum/genetics , DNA Transposable Elements , Plant Proteins/genetics , Transaminases/genetics , Alleles , Alternative Splicing , Benzyl Alcohols/metabolism , Benzylamines/metabolism , Capsicum/physiology , Gene Expression Regulation, Plant , Introns , Mutation , Plant Proteins/metabolism , Transaminases/metabolism
4.
Plant Cell Rep ; 36(2): 267-279, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27873007

ABSTRACT

KEY MESSAGE: This research reveals that the up-regulated expression of multiple capsaicinoid biosynthetic genes in pericarp tissue leads to the elevation of total capsaicinoid content in chili pepper fruit. Capsaicinoids are health-functional compounds that are produced uniquely in chili pepper fruits. A high capsaicinoid level is one of the major parameters determining the commercial quality and health-promoting properties of chili peppers. To investigate the mechanisms responsible for its high contents, we compared an extremely pungent cultivar 'Trinidad Moruga Scorpion Yellow' (MY) with other cultivars of different pungency levels (Fushimi-amanaga, Takanotsume, Red Habanero). Capsaicinoid concentrations were markedly higher in MY fruit (23.9 mg/g DW) than in other pungent cultivars including 'Red Habanero' (HB) fruit (14.3 mg/g DW). Comparative analysis of MY and HB reveals that both cultivars accumulated similar capsaicinoid concentrations in the placental septum, with that in the HB pericarp (1.8 mg/g DW) being markedly lower than that in the placental septum (69.1 mg/g DW). The capsaicinoid concentration in HB fruit is dependent on the placental septum, as reported in other accessions. Therefore, even though placental septum tissue contains high capsaicinoid concentrations, those in the pericarp and seeds attenuated its total content. In contrast, the MY pericarp exhibited a markedly higher concentration (23.2 mg/g DW). A qRT-PCR analysis revealed that multiple capsaicinoid biosynthetic pathway genes (Pun1, pAMT, KAS, and BCAT) were strongly up-regulated in placental septum of pungent cultivars. The genes were expressed exclusively in the MY pericarp, but were barely detected in the pericarps of other pungent cultivars. Collectively, the present study indicates that the up-regulated expression of these genes not only in placental septum but also in pericarp plays an important role in driving capsaicinoid accumulation in the whole fruit.


Subject(s)
Biosynthetic Pathways/genetics , Capsaicin/metabolism , Capsicum/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Genes, Plant , Biomass , Capsicum/cytology , Fruit/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...