Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(3)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30708995

ABSTRACT

To develop orthopedic implants that are optimized for each patient's needs or skeletal structure (custom-made implants), evaluations of the bending strength, bending stiffness, and durability of various types of conventional osteosynthesis devices have become important. Four-point bending tests and compression bending tests of osteosynthesis devices (bone plates, intramedullary nail rods, spinal rods, compression hip screws (CHSs), short femoral nails, and metaphyseal plates) were carried out to measure their bending stiffness, bending strength, and durability. The bending stiffness of bone plates, intramedullary nails, spinal rods, CHSs, short femoral nails, and metaphyseal plates increased with increasing bending strength. The durability limit of various types of osteosynthesis devices linearly increased with increasing bending strength. The relationship (durability limit at 106 cycles) = 0.67 × (bending strength) (N·m) (R² = 0.85) was obtained by regression. The relationship for the highly biocompatible Ti-15Zr-4Nb-4Ta alloy was also linear. The mechanical strength and ductility of specimens that were cut from various osteosynthesis devices were excellent and their microstructures consisted of fine structures, which were considered to be related to the excellent durability. These results are expected to be useful for the development of implants suitable for the skeletal structure of patients using three-dimensional (3D) layer manufacturing technologies.

2.
Mater Sci Eng C Mater Biol Appl ; 33(4): 1993-2001, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23498224

ABSTRACT

V ions showed high cytotoxicity for mouse fibroblast L929, osteoblastic MC3T3-E1, and macrophage-like J774.1 cells compared with Pb, Cu, Ni, Co, Zn, and Mo ions. The quantities of metal ions incorporated into the L929 and MC3T3-E1 cells increased with increasing metal concentration in the medium, depending on the metal ion type. In particular, the quantities of V incorporated into the cells were markedly higher than those of other metals. It was suggested that the cytotoxicity of a metal ion changes with the quantity of the metal ion incorporated into cells. It was also considered that V ions are incorporated into cells through xanthine derived from fetal bovine serum by high-performance liquid chromatography (HPLC). The strong interaction of Co, Ni and Mo with amino acids was analyzed by HPLC. The rate of increase of nitric oxide (NO) concentration released with the activation of the mouse macrophage-like J774.1 cells increased at a concentration of V ions ten times lower than that of Ni ions. The release of the cytokine tumor necrosis factor-α (TNF-α) from the J774.1 cells started at approximately 0.5 ppm V; interleukin-6 (IL-6) and transforming growth factor-ß (TGF-ß) showed a marked increase in the rate of increase at more than 1 ppm V. No increase in the concentration of IL-1α, IL-8, IL-15 or granulocyte macrophage-colony stimulating factor (GM-CSF) was observed for V and Ni ions.


Subject(s)
Fibroblasts/cytology , Macrophage Activation/drug effects , Macrophages/cytology , Metals/pharmacology , Osteoblasts/cytology , Amino Acids/analysis , Animals , Cell Line , Chemical Fractionation , Chromatography, High Pressure Liquid , Cytokines/metabolism , Fibroblasts/drug effects , Fibroblasts/metabolism , Inhibitory Concentration 50 , Ions , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism
3.
Biomaterials ; 26(1): 11-21, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15193877

ABSTRACT

To investigate the metal release of each base and alloying elements in vitro, SUS316L stainless steel, Co-Cr-Mo casting alloy, commercially pure Ti grade 2, and Ti-6Al-4V, V-free Ti-6Al-7Nb and Ti-15Zr-4Nb-4Ta alloys were immersed in various solutions, namely, alpha-medium, PBS(-), calf serum, 0.9% NaCl, artificial saliva, 1.2 mass% L-cysteine, 1 mass% lactic acid and 0.01 mass% HCl for 7d. The difference in the quantity of Co released from the Co-Cr-Mo casting alloy was relatively small in all the solutions. The quantities of Ti released into alpha-medium, PBS(-), calf serum, 0.9% NaCl and artificial saliva were much lower than those released into 1.2% L-cysteine, 1% lactic acid and 0.01% HCl. The quantity of Fe released from SUS316L stainless steel decreased linearly with increasing pH. On the other hand, the quantity of Ti released from Ti materials increased with decreasing pH, and it markedly attenuated at pHs of approximately 4 and higher. The quantity of Ni released from stainless steel gradually decreased with increasing pH. The quantities of Al released from the Ti-6Al-4V and Ti-6Al-7Nb alloys gradually decreased with increasing pH. A small V release was observed in calf serum, PBS(-), artificial saliva, 1% lactic acid, 1.2% l-cysteine and 0.01% HCl. The quantity of Ti released from the Ti-15Zr-4Nb-4Ta alloy was smaller than those released from the Ti-6Al-4V and Ti-6Al-7Nb alloys in all the solutions. In particular, it was approximately 30% or smaller in 1% lactic acid, 1.2% L-cysteine and 0.01% HCl. The quantity of (Zr + Nb + Ta) released was also considerably lower than that of (Al + Nb) or (Al + V) released. Therefore, the Ti-15Zr-4Nb-4Ta alloy with its low metal release in vitro is considered advantageous for long-term implants.


Subject(s)
Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Body Fluids/chemistry , Materials Testing/methods , Stainless Steel/chemistry , Titanium/chemistry , Vitallium/chemistry , Biocompatible Materials/analysis , Corrosion , Hydrogen-Ion Concentration , Metals/chemistry , Stainless Steel/analysis , Titanium/analysis , Vitallium/analysis
4.
Biomaterials ; 25(28): 5913-20, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15183605

ABSTRACT

To compare metal concentrations in tibia tissues with various metallic implants, SUS316L stainless steel, Co-Cr-Mo casting alloy, and Ti-6Al-4V and V-free Ti-15Zr-4Nb-4Ta alloys were implanted into the rat tibia for up to 48 weeks. After the implant was removed from the tibia by decalcification, the tibia tissues near the implant were lyophilized. Then the concentrations of metals in the tibia tissues by microwave acid digestion were determined by inductively coupled plasma-mass spectrometry. Fe concentrations were determined by graphite-furnace atomic absorption spectrometry. The Fe concentration in the tibia tissues with the SUS316L implant was relatively high, and it rapidly increased up to 12 weeks and then decreased thereafter. On the other hand, the Co concentration in the tibia tissues with the Co-Cr-Mo implant was lower, and it increased up to 24 weeks and slightly decreased at 48 weeks. The Ni concentration in the tibia tissues with the SUS316L implant increased up to 6 weeks and then gradually decreased thereafter. The Cr concentration tended to be higher than the Co concentration. This Cr concentration linearly increased up to 12 weeks and then decreased toward 48 weeks in the tibia tissues with the SUS316L or Co-Cr-Mo implant. Minute quantities of Ti, Al and V in the tibia tissues with the Ti-6Al-4V implant were found. The Ti concentration in the tibia tissues with the Ti-15Zr-4Nb-4Ta implant was lower than that in the tibia tissues with the Ti-6Al-4V implant. The Zr, Nb and Ta concentrations were also very low. The Ti-15Zr-4Nb-4Ta alloy with its low metal release in vivo is considered advantageous for long-term implants.


Subject(s)
Metals/analysis , Prostheses and Implants , Tibia/chemistry , Animals , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...