Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Oncol Lett ; 27(3): 113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38304169

ABSTRACT

Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor ß, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.

2.
Cell Death Dis ; 15(1): 53, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38225221

ABSTRACT

Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.


Subject(s)
Hyaluronic Acid , Resilience, Psychological , Humans , Glycosylation , Hyaluronic Acid/metabolism , Neoplasm Recurrence, Local/metabolism , Polysaccharides/metabolism , Dietary Supplements , Neoplastic Stem Cells/metabolism
3.
Cell Death Dis ; 14(12): 815, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081808

ABSTRACT

Given the lack of therapeutic targets, the conventional approach for managing triple-negative breast cancer (TNBC) involves the utilization of cytotoxic chemotherapeutic agents. However, most TNBCs acquire resistance to chemotherapy, thereby lowering the therapeutic outcome. In addition to oncogenic mutations in TNBC, microenvironment-induced mechanisms render chemoresistance more complex and robust in vivo. Here, we aimed to analyze whether depletion of Munc18-1 interacting protein 3 (Mint3), which activates hypoxia-inducible factor 1 (HIF-1) during normoxia, sensitizes TNBC to chemotherapy. We found that Mint3 promotes the chemoresistance of TNBC in vivo. Mint3 depletion did not affect the sensitivity of human TNBC cell lines to doxorubicin and paclitaxel in vitro but sensitized tumors of these cells to chemotherapy in vivo. Transcriptome analyses revealed that the Mint3-HIF-1 axis enhanced heat shock protein 70 (HSP70) expression in tumors of TNBC cells. Administering an HSP70 inhibitor enhanced the antitumor activity of doxorubicin in TNBC tumors, similar to Mint3 depletion. Mint3 expression was also correlated with HSP70 expression in human TNBC specimens. Mechanistically, Mint3 depletion induces glycolytic maladaptation to the tumor microenvironment in TNBC tumors, resulting in energy stress. This energy stress by Mint3 depletion inactivated heat shock factor 1 (HSF-1), the master regulator of HSP expression, via the AMP-activated protein kinase/mechanistic target of the rapamycin pathway following attenuated HSP70 expression. In conclusion, Mint3 is a unique regulator of TNBC chemoresistance in vivo via metabolic adaptation to the tumor microenvironment, and a combination of Mint3 inhibition and chemotherapy may be a good strategy for TNBC treatment.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Carrier Proteins/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
4.
J Clin Invest ; 133(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37966117

ABSTRACT

The heterogeneity of cancer stem cells (CSCs) within tumors presents a challenge in therapeutic targeting. To decipher the cellular plasticity that fuels phenotypic heterogeneity, we undertook single-cell transcriptomics analysis in triple-negative breast cancer (TNBC) to identify subpopulations in CSCs. We found a subpopulation of CSCs with ancestral features that is marked by FXYD domain-containing ion transport regulator 3 (FXYD3), a component of the Na+/K+ pump. Accordingly, FXYD3+ CSCs evolve and proliferate, while displaying traits of alveolar progenitors that are normally induced during pregnancy. Clinically, FXYD3+ CSCs were persistent during neoadjuvant chemotherapy, hence linking them to drug-tolerant persisters (DTPs) and identifying them as crucial therapeutic targets. Importantly, FXYD3+ CSCs were sensitive to senolytic Na+/K+ pump inhibitors, such as cardiac glycosides. Together, our data indicate that FXYD3+ CSCs with ancestral features are drivers of plasticity and chemoresistance in TNBC. Targeting the Na+/K+ pump could be an effective strategy to eliminate CSCs with ancestral and DTP features that could improve TNBC prognosis.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Neoplastic Stem Cells/pathology , Cell Line, Tumor , Membrane Proteins , Neoplasm Proteins/genetics
5.
J Bioinform Comput Biol ; 21(4): 2350019, 2023 08.
Article in English | MEDLINE | ID: mdl-37694488

ABSTRACT

Usually, the clustering process is the first step in several data analyses. Clustering allows identify patterns we did not note before and helps raise new hypotheses. However, one challenge when analyzing empirical data is the presence of covariates, which may mask the obtained clustering structure. For example, suppose we are interested in clustering a set of individuals into controls and cancer patients. A clustering algorithm could group subjects into young and elderly in this case. It may happen because the age at diagnosis is associated with cancer. Thus, we developed CEM-Co, a model-based clustering algorithm that removes/minimizes undesirable covariates' effects during the clustering process. We applied CEM-Co on a gene expression dataset composed of 129 stage I non-small cell lung cancer patients. As a result, we identified a subgroup with a poorer prognosis, while standard clustering algorithms failed.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Aged , Humans , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Algorithms , Cluster Analysis
6.
Biochem Biophys Res Commun ; 674: 183-189, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37450958

ABSTRACT

Mitochondrial one-carbon metabolism is crucial for embryonic development and tumorigenesis, as it supplies one-carbon units necessary for nucleotide synthesis and rapid cell proliferation. However, its contribution to adult tissue homeostasis remains largely unknown. To examine its role in adult tissue homeostasis, we specifically investigated mammary gland development during pregnancy, as it involves heightened cell proliferation. We discovered that MTHFD2, a mitochondrial one-carbon metabolic enzyme, is expressed in both luminal and basal/myoepithelial cell layers, with upregulated expression during pregnancy. Using the mouse mammary tumor virus (MMTV)-Cre recombinase system, we generated mice with a specific mutation of Mthfd2 in mammary epithelial cells. While the mutant mice were capable of properly nurturing their offspring, the pregnancy-induced expansion of mammary glands was significantly delayed. This indicates that MTHFD2 contributes to the rapid development of mammary glands during pregnancy. Our findings shed light on the role of mitochondrial one-carbon metabolism in facilitating rapid cell proliferation, even in the context of the adult tissue homeostasis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Methylenetetrahydrofolate Dehydrogenase (NADP) , Animals , Female , Mice , Pregnancy , Cell Proliferation , Epithelial Cells/metabolism , Hydrolases/metabolism , Mammary Glands, Animal/metabolism , Mice, Transgenic , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism
7.
Cell Death Dis ; 14(4): 241, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019897

ABSTRACT

Drug resistance limits the efficacy of chemotherapy and targeted cancer treatments, calling for the identification of druggable targets to overcome it. Here we show that the mitochondria-shaping protein Opa1 participates in resistance against the tyrosine kinase inhibitor gefitinib in a lung adenocarcinoma cell line. Respiratory profiling revealed that oxidative metabolism was increased in this gefitinib-resistant lung cancer cell line. Accordingly, resistant cells depended on mitochondrial ATP generation, and their mitochondria were elongated with narrower cristae. In the resistant cells, levels of Opa1 were increased and its genetic or pharmacological inhibition reverted the mitochondrial morphology changes and sensitized them to gefitinib-induced cytochrome c release and apoptosis. In vivo, the size of gefitinib-resistant lung orthotopic tumors was reduced when gefitinib was combined with the specific Opa1 inhibitor MYLS22. The combo gefitinib-MYLS22 treatment increased tumor apoptosis and reduced its proliferation. Thus, the mitochondrial protein Opa1 participates in gefitinib resistance and can be targeted to overcome it.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Gefitinib/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Cell Line, Tumor , Lung Neoplasms/pathology , Protein Kinase Inhibitors/pharmacology , Mitochondria/metabolism , Lung/metabolism , Cell Proliferation , Apoptosis , Antineoplastic Agents/pharmacology , GTP Phosphohydrolases/metabolism
8.
Sci Rep ; 13(1): 37, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36593263

ABSTRACT

Cryopreservation of tissues is a tough challenge. Cryopreservation is categorized into slow-freezing and vitrification, and vitrification has recently been recognized as a suitable method for tissue cryopreservation. On the contrary, some researchers have reported that slow-freezing also has potential for tissue cryopreservation. Although conventional cryoprotectants have been studied well, some novel ones may efficiently cryopreserve tissues via slow-freezing. In this study, we used aqueous solutions of an emerging cryoprotectant, an artificial zwitterion supplemented with a conventional cryoprotectant, dimethyl sulfoxide (DMSO), for cell spheroids. The zwitterion/DMSO aqueous solutions produced a better cryoprotective effect on cell spheroids, which are the smallest units of tissues, compared to that of a commercial cryoprotectant. Cryopreservation with the zwitterion/DMSO solutions not only exhibited better cell recovery but also maintained the functions of the spheroids effectively. The optimized composition of the solution was 10 wt% zwitterion, 15 wt% DMSO, and 75 wt% water. The zwitterion/DMSO solution gave a higher number of living cells for the cryopreservation of mouse tumor tissues than a commercial cryoprotectant. The zwitterion/DMSO solution was also able to cryopreserve human tumor tissue, a patient-derived xenograft.


Subject(s)
Cryoprotective Agents , Dimethyl Sulfoxide , Humans , Mice , Animals , Cryoprotective Agents/pharmacology , Freezing , Dimethyl Sulfoxide/pharmacology , Cryopreservation/methods , Vitrification
9.
Cancer Sci ; 114(5): 1792-1799, 2023 May.
Article in English | MEDLINE | ID: mdl-36704829

ABSTRACT

As the incidence of breast cancer continues to increase, it is critical to develop prevention strategies for this disease. Inflammation underlies the onset of the disease, and NF-κB is a master transcription factor for inflammation. Nuclear factor-κB (NF-κB) is activated in a variety of cell types, including normal epithelial cells, cancer cells, cancer-associated fibroblasts (CAFs), and immune cells. Ductal carcinoma in situ (DCIS) is the earliest stage of breast cancer, and not all DCIS lesions develop into invasive breast cancers (IBC). Currently, most patients with DCIS undergo surgery with postoperative therapy, although there is a risk of overtreatment. In BRCA mutants, receptor activator of NF-κB (RANK)-positive progenitors serve as the cell of origin, and treatment using the RANK monoclonal antibody reduces the risk of IBC. There is still an unmet need to diagnose malignant DCIS, which has the potential to progress to IBC, and to establish appropriate prevention strategies. We recently demonstrated novel molecular mechanisms for NF-κB activation in premalignant mammary tissues, which include DCIS, and the resultant cytokine-enriched microenvironment is essential for breast cancer development. On the early endosomes in a few epithelial cells, the adaptor protein FRS2ß, forming a complex with ErbB2, carries the IκB kinase (IKK) complex and leads to the activation of NF-κB, thereby inducing a variety of cytokines. Therefore, the FRS2ß-NFκB axis in the inflammatory premalignant environment could be targetable to prevent IBC. Further analysis of the molecular mechanisms of inflammation in the premalignant microenvironment is necessary to prevent the risk of IBC.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , NF-kappa B/metabolism , Cytokines , I-kappa B Kinase , Inflammation , Carcinoma, Ductal, Breast/metabolism , Tumor Microenvironment
10.
Biochem Biophys Res Commun ; 624: 81-88, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35940131

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by its high ability of invasiveness and metastasis, namely lacking expression of estrogen receptor (ER), progesterone receptor, and HER2. We previously demonstrated that estrogen responsive finger protein (Efp) plays a tumor-promotive role in ER-positive breast cancer, yet it remains to be addressed whether Efp contributes to TNBC pathophysiology. We here found that Efp mRNA and protein were abundantly expressed in TNBC patient-derived cells and MDA-MB-231 cells. Efp silencing significantly decreased the growth and migration of both TNBC cell models. Cell-cycle profiling showed a decrease in the S phase population upon Efp silencing. Moreover, exogenous Efp expression increased the growth, migration, and the percentages of S phase population of TNBC cells. Transcriptomic analysis in the Efp-silenced TNBC cells identified several candidate Efp targets including cell cycle-related genes CDCA7 and HELLS, whose contribution to cell growth were validated by siRNA-mediated gene silencing. These results suggest that Efp plays a tumor-promotive role in TNBC and can be a potential therapeutic target for the aggressive disease.


Subject(s)
Triple Negative Breast Neoplasms , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Profiling , Humans , Nuclear Proteins/genetics , Transcription Factors , Tripartite Motif Proteins , Triple Negative Breast Neoplasms/pathology , Ubiquitin-Protein Ligases
11.
Biochem Biophys Res Commun ; 584: 7-14, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34753066

ABSTRACT

Patients with triple-negative breast cancer have a poor prognosis as only a few efficient targeted therapies are available. Cancer cells are characterized by their unregulated proliferation and require large amounts of nucleotides to replicate their DNA. One-carbon metabolism contributes to purine and pyrimidine nucleotide synthesis by supplying one carbon atom. Although mitochondrial one-carbon metabolism has recently been focused on as an important target for cancer treatment, few specific inhibitors have been reported. In this study, we aimed to examine the effects of DS18561882 (DS18), a novel, orally active, specific inhibitor of methylenetetrahydrofolate dehydrogenase (MTHFD2), a mitochondrial enzyme involved in one-carbon metabolism. Treatment with DS18 led to a marked reduction in cancer-cell proliferation; however, it did not induce cell death. Combinatorial treatment with DS18 and inhibitors of checkpoint kinase 1 (Chk1), an activator of the S phase checkpoint pathway, efficiently induced apoptotic cell death in breast cancer cells and suppressed tumorigenesis in a triple-negative breast cancer patient-derived xenograft model. Mechanistically, MTHFD2 inhibition led to cell cycle arrest and slowed nucleotide synthesis. This finding suggests that DNA replication stress occurs due to nucleotide shortage and that the S-phase checkpoint pathway is activated, leading to cell-cycle arrest. Combinatorial treatment with both inhibitors released cell-cycle arrest, but induced accumulation of DNA double-strand breaks, leading to apoptotic cell death. Collectively, a combination of MTHFD2 and Chk1 inhibitors would be a rational treatment option for patients with triple-negative breast cancer.


Subject(s)
Aminohydrolases/antagonists & inhibitors , Checkpoint Kinase 1/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Multifunctional Enzymes/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Administration, Oral , Aminohydrolases/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Checkpoint Kinase 1/metabolism , Drug Therapy, Combination , Enzyme Inhibitors/administration & dosage , Female , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multifunctional Enzymes/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays/methods
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34663724

ABSTRACT

Although it is held that proinflammatory changes precede the onset of breast cancer, the underlying mechanisms remain obscure. Here, we demonstrate that FRS2ß, an adaptor protein expressed in a small subset of epithelial cells, triggers the proinflammatory changes that induce stroma in premalignant mammary tissues and is responsible for the disease onset. FRS2ß deficiency in mouse mammary tumor virus (MMTV)-ErbB2 mice markedly attenuated tumorigenesis. Importantly, tumor cells derived from MMTV-ErbB2 mice failed to generate tumors when grafted in the FRS2ß-deficient premalignant tissues. We found that colocalization of FRS2ß and the NEMO subunit of the IκB kinase complex in early endosomes led to activation of nuclear factor-κB (NF-κB), a master regulator of inflammation. Moreover, inhibition of the activities of the NF-κB-induced cytokines, CXC chemokine ligand 12 and insulin-like growth factor 1, abrogated tumorigenesis. Human breast cancer tissues that express higher levels of FRS2ß contain more stroma. The elucidation of the FRS2ß-NF-κB axis uncovers a molecular link between the proinflammatory changes and the disease onset.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Mammary Neoplasms, Experimental/etiology , Mammary Neoplasms, Experimental/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/immunology , Animals , Breast Neoplasms/immunology , Carcinogenesis , Cytokines/metabolism , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Mammary Neoplasms, Experimental/immunology , Mammary Tumor Virus, Mouse , Mice , Mice, Knockout , NF-kappa B/metabolism , Pregnancy , Receptor, ErbB-2/metabolism , Retroviridae Infections , Tumor Microenvironment/immunology , Tumor Virus Infections
13.
Curr Biol ; 31(14): 3086-3097.e7, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34087104

ABSTRACT

At the early stage of cancer development, oncogenic mutations often cause multilayered epithelial structures. However, the underlying molecular mechanism still remains enigmatic. By performing a series of screenings targeting plasma membrane proteins, we have found that collagen XVII (COL17A1) and CD44 accumulate in RasV12-, Src-, or ErbB2-transformed epithelial cells. In addition, the expression of COL17A1 and CD44 is also regulated by cell density and upon apical cell extrusion. We further demonstrate that the expression of COL17A1 and CD44 is profoundly upregulated at the upper layers of multilayered, transformed epithelia in vitro and in vivo. The accumulated COL17A1 and CD44 suppress mitochondrial membrane potential and reactive oxygen species (ROS) production. The diminished intracellular ROS level then promotes resistance against ferroptosis-mediated cell death upon cell extrusion, thereby positively regulating the formation of multilayered structures. To further understand the functional role of COL17A1, we performed comprehensive metabolome analysis and compared intracellular metabolites between RasV12 and COL17A1-knockout RasV12 cells. The data imply that COL17A1 regulates the metabolic pathway from the GABA shunt to mitochondrial complex I through succinate, thereby suppressing the ROS production. Moreover, we demonstrate that CD44 regulates membrane accumulation of COL17A1 in multilayered structures. These results suggest that CD44 and COL17A1 are crucial regulators for the clonal expansion of transformed cells within multilayered epithelia, thus being potential targets for early diagnosis and preventive treatment for precancerous lesions.


Subject(s)
Cell Transformation, Neoplastic , Epithelium/growth & development , Hyaluronan Receptors/metabolism , Non-Fibrillar Collagens/metabolism , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Dogs , Ferroptosis , Humans , Madin Darby Canine Kidney Cells , Membrane Potential, Mitochondrial , Mice , Reactive Oxygen Species
14.
Cancer Sci ; 112(9): 3810-3821, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34145929

ABSTRACT

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in patients with non-small-cell lung cancer (NSCLC) harboring EGFR mutations. However, due to acquired resistance to EGFR-TKIs, even patients on third-generation osimertinib have a poor prognosis. Resistance mechanisms are still not fully understood. Here, we demonstrate that the increased expression of MUSASHI-2 (MSI2), an RNA-binding protein, is a novel mechanism for resistance to EGFR-TKIs. We found that after a long-term exposure to gefitinib, the first-generation EGFR-TKI lung cancer cells harboring the EGFR-TKI-sensitive mutations became resistant to both gefitinib and osimertinib. Although other mutations in EGFR were not found, expression levels of Nanog, a stemness core protein, and activities of aldehyde dehydrogenase (ALDH) were increased, suggesting that cancer stem-like properties were increased. Transcriptome analysis revealed that MSI2 was among the stemness-related genes highly upregulated in EGFR-TKI-resistant cells. Knockdown of MSI2 reduced cancer stem-like properties, including the expression levels of Nanog, a core stemness factor. We demonstrated that knockdown of MSI2 restored sensitivity to osimertinib or gefitinib in EGFR-TKI-resistant cells to levels similar to those of parental cells in vitro. An RNA immunoprecipitation (RIP) assay revealed that antibodies against MSI2 were bound to Nanog mRNA, suggesting that MSI2 increases Nanog expression by binding to Nanog mRNA. Moreover, overexpression of MSI2 or Nanog conferred resistance to osimertinib or gefitinib in parental cells. Finally, MSI2 knockdown greatly increased the sensitivity to osimertinib in vivo. Collectively, our findings provide proof of principle that targeting the MSI2-Nanog axis in combination with EGFR-TKIs would effectively prevent the emergence of acquired resistance.


Subject(s)
Acrylamides/pharmacology , Adenocarcinoma of Lung/metabolism , Aniline Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Gefitinib/pharmacology , Lung Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , RNA-Binding Proteins/metabolism , Up-Regulation , A549 Cells , Acrylamides/therapeutic use , Adenocarcinoma of Lung/pathology , Aniline Compounds/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gefitinib/therapeutic use , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Lung Neoplasms/pathology , Mutation , Nanog Homeobox Protein/metabolism , Protein Kinase Inhibitors/therapeutic use , RNA-Binding Proteins/genetics , Transcriptome , Transfection
15.
Oncol Lett ; 21(5): 385, 2021 May.
Article in English | MEDLINE | ID: mdl-33777208

ABSTRACT

Rodent models mimic the heterogeneity of head and neck cancer (HNC) malignancies and are used to investigate HNC-associated biomarkers and evaluate drug responses. To assess the utility of patient-derived xenografts (PDXs) as an HNC model, 18 tumour samples were obtained from surgical specimens of patients with HNC and implanted into non-obese diabetic severe combined immunodeficient mice. The histological features of PDXs and corresponding patient samples were compared. Furthermore, the present study investigated how PDX responses to anticancer drugs mimic patient clinical responses, as well as the expression of adenosine triphosphate-binding cassette transporters through chemotherapy in an HNC-PDX model. A total of five PDXs from patients with HNC exhibiting high correspondence with histopathological features of the original patient samples were established (establishment rate, 28%). The responses of three PDXs to cisplatin were associated with clinical responses of the patients. ABC transporter expression was augmented in one PDX model after anticancer drug treatment, but not in PBS-treated passaged PDXs. PDX models exhibited similar biological and chemosensitive characteristics to those of the primary tumours. PDXs could be a useful preclinical tool to test novel therapeutic agents and identify novel targets and biomarkers in HNC.

16.
J Exp Clin Cancer Res ; 40(1): 110, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757580

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is an incurable disease. The acquisition of resistance to drugs, including immunomodulatory drugs (IMiDs), has a negative effect on its prognosis. Cereblon (CRBN) is a key mediator of the bioactivities of IMiDs such as lenalidomide. Moreover, genetic alteration of CRBN is frequently detected in IMiD-resistant patients and is considered to contribute to IMiD resistance. Thus, overcoming resistance to drugs, including IMiDs, is expected to improve clinical outcomes. Here, we examined potential mechanisms of a histone deacetylase (HDAC) inhibitor and Akt inhibitor in relapsed/refractory MM patients. METHODS: We established lenalidomide-resistant cells by knocking down CRBN with RNAi-mediated downregulation or knocking out CRBN using CRISPR-Cas9 in MM cells. Additionally, we derived multi-drug (bortezomib, doxorubicin, or dexamethasone)-resistant cell lines and primary cells from relapsed/refractory MM patients. The effects of HDAC and Akt inhibitors on these drug-resistant MM cells were then observed with a particular focus on whether HDAC inhibitors enhance immunotherapy efficacy. We also investigated the effect of lenalidomide on CRBN-deficient cells. RESULTS: The HDAC inhibitor suppressed the growth of drug-resistant MM cell lines and enhanced the antibody-dependent cellular cytotoxicity (ADCC) of therapeutic antibodies by upregulating natural killer group 2D (NKG2D) ligands in MM cells. CRBN-deficient cells showed lenalidomide-induced upregulation of phosphorylated glycogen synthase kinase-3 (p-GSK-3) and c-Myc phosphorylation. Moreover, HDAC and Akt inhibitors downregulated c-Myc by blocking GSK-3 phosphorylation. HDAC and Akt inhibitors also exhibited synergistic cytotoxic and c-Myc-suppressive effects. The dual HDAC and PI3K inhibitor, CUDC-907, exhibited cytotoxic and immunotherapy-enhancing effects in MM cells, including multi-drug-resistant lines and primary cells from lenalidomide-resistant patients. CONCLUSIONS: The combination of an HDAC and an Akt inhibitor represents a promising approach for the treatment of relapsed/refractory MM.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Immunotherapy/methods , Multiple Myeloma/drug therapy , Angiogenesis Inhibitors/pharmacology , Animals , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mice , Multiple Myeloma/pathology
17.
Cell Death Dis ; 12(4): 322, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771977

ABSTRACT

Accumulating evidence indicates the presence of cytoplasmic DNAs in various types of malignant cells, and its involvement in anti-cancer drug- or radiotherapy-mediated DNA damage response and replication stress. However, the pathophysiological roles of cytoplasmic DNAs in leukemias remain largely unknown. We observed that during hematopoietic stem cell transplantation (HSCT) in mouse myeloid leukemia models, double-stranded (ds)DNAs were constitutively secreted in the form of extracellular vesicles (EVs) from myeloid leukemia cells and were transferred to the donor cells to dampen their hematopoietic capabilities. Subsequent analysis of cytoplasmic DNA dynamics in leukemia cells revealed that autophagy regulated cytoplasmic dsDNA accumulation and subsequent redistribution into EVs. Moreover, accumulated cytoplasmic dsDNAs activated STING pathway, thereby reducing leukemia cell viability through reactive oxygen species (ROS) generation. Pharmaceutical inhibition of autophagosome formation induced cytoplasmic DNA accumulation, eventually triggering cytoplasmic DNA sensing pathways to exert cytotoxicity, preferentially in leukemia cells. Thus, manipulation of cytoplasmic dsDNA dynamics can be a novel and potent therapeutic strategy for myeloid leukemias.


Subject(s)
Cell Death/genetics , DNA/genetics , Leukemia, Myeloid/genetics , Animals , Humans , Male , Mice , Transfection
18.
Cancer Sci ; 112(3): 1209-1224, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33340428

ABSTRACT

Cancer stem-like cells (CSCs) induce drug resistance and recurrence of tumors when they experience DNA replication stress. However, the mechanisms underlying DNA replication stress in CSCs and its compensation remain unclear. Here, we demonstrate that upregulated c-Myc expression induces stronger DNA replication stress in patient-derived breast CSCs than in differentiated cancer cells. Our results suggest critical roles for mini-chromosome maintenance protein 10 (MCM10), a firing (activating) factor of DNA replication origins, to compensate for DNA replication stress in CSCs. MCM10 expression is upregulated in CSCs and is maintained by c-Myc. c-Myc-dependent collisions between RNA transcription and DNA replication machinery may occur in nuclei, thereby causing DNA replication stress. MCM10 may activate dormant replication origins close to these collisions to ensure the progression of replication. Moreover, patient-derived breast CSCs were found to be dependent on MCM10 for their maintenance, even after enrichment for CSCs that were resistant to paclitaxel, the standard chemotherapeutic agent. Further, MCM10 depletion decreased the growth of cancer cells, but not of normal cells. Therefore, MCM10 may robustly compensate for DNA replication stress and facilitate genome duplication in cancer cells in the S-phase, which is more pronounced in CSCs. Overall, we provide a preclinical rationale to target the c-Myc-MCM10 axis for preventing drug resistance and recurrence of tumors.


Subject(s)
Breast Neoplasms/genetics , Minichromosome Maintenance Proteins/metabolism , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , DNA Damage/drug effects , DNA Replication/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Minichromosome Maintenance Proteins/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/drug effects , Primary Cell Culture , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Spheroids, Cellular , Tumor Cells, Cultured , Up-Regulation
19.
Cancer Sci ; 111(12): 4359-4370, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32976661

ABSTRACT

Metastatic progression remains the major cause of death in human breast cancer. Cancer cells with cancer stem cell (CSC) properties drive initiation and growth of metastases at distant sites. We have previously established the breast cancer patient-derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, the expression levels of S100A10 and its family proteins were much higher in the CD44+ cancer cells metastasized to the liver than those at the primary site. Knockdown of S100A10 in breast cancer cells suppressed and overexpression of S100A10 in breast cancer PDX cells enhanced their invasion abilities and 3D organoid formation capacities in vitro. Mechanistically, S100A10 regulated the matrix metalloproteinase activity and the expression levels of stem cell-related genes. Finally, constitutive knockdown of S100A10 significantly reduced their metastatic ability to the liver in vivo. These findings suggest that S100A10 functions as a metastasis promoter of breast CSCs by conferring both invasion ability and CSC properties in breast cancers.


Subject(s)
Annexin A2/metabolism , Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , S100 Proteins/metabolism , Up-Regulation , Animals , Annexin A2/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Progression , Female , Gene Expression Profiling , Gene Knockout Techniques , Humans , Hyaluronan Receptors/metabolism , Lentivirus/genetics , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Matrix Metalloproteinases/metabolism , Mice , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/pathology , Organoids , Reverse Transcriptase Polymerase Chain Reaction , S100 Proteins/genetics
20.
Oncogene ; 39(39): 6218-6230, 2020 09.
Article in English | MEDLINE | ID: mdl-32826949

ABSTRACT

Pancreatic cancer is one of the most fatal cancers without druggable molecular targets. Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcriptional factor that promotes malignancy in various cancers including pancreatic cancer. Herein, we found that HIF-1 is accumulated in normoxic or moderate hypoxic areas of pancreatic cancer xenografts in vivo and is active even during normoxia in pancreatic cancer cells in vitro. This prompted us to analyze whether the HIF-1 activator Mint3 contributes to malignant features of pancreatic cancer. Mint3 depletion by shRNAs attenuated HIF-1 activity during normoxia and cell proliferation concomitantly with accumulated p21 and p27 protein in pancreatic cancer cells. Further analyses revealed that Mint3 increased transcription of the oncogenic ubiquitin ligase SKP2 in pancreatic cancer cells via HIF-1. This Mint3-HIF-1-SKP2 axis also promoted partial epithelial-mesenchymal transition, stemness features, and chemoresistance in pancreatic cancer cells. Even in vivo, Mint3 depletion attenuated tumor growth of orthotopically inoculated human pancreatic cancer AsPC-1 cells. Database and tissue microarray analyses showed that Mint3 expression is correlated with SKP2 expression in human pancreatic cancer specimens and high Mint3 expression is correlated with poor prognosis of pancreatic cancer patients. Thus, targeting Mint3 may be useful for attenuating the malignant features of pancreatic cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Hypoxia-Inducible Factor 1/metabolism , Pancreatic Neoplasms/metabolism , S-Phase Kinase-Associated Proteins/biosynthesis , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/physiology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , S-Phase Kinase-Associated Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...